Ferroelectrically modulated ion dynamics in Li+ electrolyte-gated transistors for neuromorphic computing

Li+ electrolyte-gated transistors (EGTs) have attracted significant attention as artificial synapses because of the fast response of Li+ ion, low operating voltage, and applicability to flexible electronics. Due to the inherent nature of Li+ ion, Li+ EGTs show, however, limitations, such as poor lon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics reviews 2023-03, Vol.10 (1)
Hauptverfasser: Jin, Minho, Lee, Haeyeon, Lee, Jae Hak, Han, Daeyoung, Im, Changik, Kim, Jiyeon, Jeon, Moongu, Lee, Eungkyu, Kim, Youn Sang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Li+ electrolyte-gated transistors (EGTs) have attracted significant attention as artificial synapses because of the fast response of Li+ ion, low operating voltage, and applicability to flexible electronics. Due to the inherent nature of Li+ ion, Li+ EGTs show, however, limitations, such as poor long-term synaptic plasticity and nonlinear/nonsymmetric conductance update, which hinder the practical applications of artificial synapses. Herein, Li+ EGTs integrated with poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) ferroelectric polymer as a channel–electrolyte interlayer are presented. Owing to the polarized domains of PVDF-TrFE, the transport of Li+ ions at the channel–electrolyte interface is accelerated, and Li+ ions effectively penetrate the channel. Moreover, the self-diffusion of Li+ ions from the channel to the electrolyte is suppressed by the downward polarized domains. Li+ EGTs, therefore, successfully demonstrate synaptic characteristics, including excitatory postsynaptic current, short-/long-term synaptic plasticity, and paired-pulse facilitation. Also, conductance update in Li+ EGTs shows a dynamic range (Gmax/Gmin) of 92.42, high linearity, and distinct stability over 100 cycles. Based on their synaptic characteristics, inference simulations using a convolution neural network for the CIFAR-10 dataset imply that Li+ EGTs are suitable as artificial synapses with an inference accuracy of 89.13%. The new methodological approach addressing modulation of ion dynamics at the interface is introduced for developing practical synaptic devices.
ISSN:1931-9401
1931-9401
DOI:10.1063/5.0130742