Anisotropy-assisted bias-free spin Hall nano-oscillator

Ferromagnet/nonmagnet (FM/NM) bilayer-based spin Hall nano-oscillators (SHNOs)—a sub-class of spintronic oscillator devices—have promising potential toward realizing low-power physical reservoir computing systems because of their inherent nonlinearity and miniature form factor. However, most of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2023-02, Vol.122 (7)
Hauptverfasser: Manna, Sourabh, Medwal, Rohit, Gupta, Surbhi, Mohan, John Rex, Fukuma, Yasuhiro, Rawat, Rajdeep Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 122
creator Manna, Sourabh
Medwal, Rohit
Gupta, Surbhi
Mohan, John Rex
Fukuma, Yasuhiro
Rawat, Rajdeep Singh
description Ferromagnet/nonmagnet (FM/NM) bilayer-based spin Hall nano-oscillators (SHNOs)—a sub-class of spintronic oscillator devices—have promising potential toward realizing low-power physical reservoir computing systems because of their inherent nonlinearity and miniature form factor. However, most of the studies on SHNOs indicate that an external biasing magnetic field is necessary for their operation, creating a bottleneck for their practical implementation in designing small and compact RC hardware. In this report, using micromagnetic simulation, we demonstrate biasing field-free operation of a FM/NM bilayer-based SHNO by exploiting the magnetic anisotropy. Our results reveal that the magnetic anisotropy in the FM layer provides active control over the DC tunability of auto-oscillation frequency and the threshold value of current needed for sustained auto-oscillations. We show that the increase in uniaxial anisotropy substantially modifies the spatial profile of auto-oscillation and eventually leads to the reduction in the threshold current for auto-oscillation, which could be utilized to design low-power computing hardware using SHNO devices.
doi_str_mv 10.1063/5.0130624
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0130624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2776264363</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-36c48a621c3dc4974017f5c955a9582c311ebbbe374e783a6376e0c0d69e0f083</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCtbVg_-g4Ekh66TTJO1xWdQVFrzoOaRpCllqU5OssP_eShc9CJ6GgYd3Pgi5ZrBkIPCeL4EhiKI8IRkDKSkyVp2SDACQipqzc3IR425qeYGYEbkaXPQp-PFAdYwuJtvmjdORdsHaPI5uyDe67_NBD576aFzf6-TDJTnrdB_t1bEuyNvjw-t6Q7cvT8_r1ZYaRJEoClNWWhTMYGvKWpbAZMdNzbmueVWYaTvbNI1FWVpZoRYohQUDragtdFDhgtzMuWPwH3sbk9r5fRimkaqQUhSiRIGTup2VCT7GYDs1Bveuw0ExUN9_UVwd_zLZu9lOtySdnB9-8KcPv1CNbfcf_pv8Bbl6byI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2776264363</pqid></control><display><type>article</type><title>Anisotropy-assisted bias-free spin Hall nano-oscillator</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Manna, Sourabh ; Medwal, Rohit ; Gupta, Surbhi ; Mohan, John Rex ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creator><creatorcontrib>Manna, Sourabh ; Medwal, Rohit ; Gupta, Surbhi ; Mohan, John Rex ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</creatorcontrib><description>Ferromagnet/nonmagnet (FM/NM) bilayer-based spin Hall nano-oscillators (SHNOs)—a sub-class of spintronic oscillator devices—have promising potential toward realizing low-power physical reservoir computing systems because of their inherent nonlinearity and miniature form factor. However, most of the studies on SHNOs indicate that an external biasing magnetic field is necessary for their operation, creating a bottleneck for their practical implementation in designing small and compact RC hardware. In this report, using micromagnetic simulation, we demonstrate biasing field-free operation of a FM/NM bilayer-based SHNO by exploiting the magnetic anisotropy. Our results reveal that the magnetic anisotropy in the FM layer provides active control over the DC tunability of auto-oscillation frequency and the threshold value of current needed for sustained auto-oscillations. We show that the increase in uniaxial anisotropy substantially modifies the spatial profile of auto-oscillation and eventually leads to the reduction in the threshold current for auto-oscillation, which could be utilized to design low-power computing hardware using SHNO devices.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0130624</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Active control ; Anisotropy ; Applied physics ; Bilayers ; Computation ; Ferromagnetism ; Form factors ; Hardware ; Magnetic anisotropy ; Oscillators ; Power management ; Threshold currents</subject><ispartof>Applied physics letters, 2023-02, Vol.122 (7)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-36c48a621c3dc4974017f5c955a9582c311ebbbe374e783a6376e0c0d69e0f083</citedby><cites>FETCH-LOGICAL-c336t-36c48a621c3dc4974017f5c955a9582c311ebbbe374e783a6376e0c0d69e0f083</cites><orcidid>0000-0002-3161-2486 ; 0000-0003-0648-2592 ; 0000-0003-1708-1671 ; 0000-0003-3622-5968 ; 0000-0002-1280-1644 ; 0000-0002-5443-4694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0130624$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Manna, Sourabh</creatorcontrib><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Mohan, John Rex</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><title>Anisotropy-assisted bias-free spin Hall nano-oscillator</title><title>Applied physics letters</title><description>Ferromagnet/nonmagnet (FM/NM) bilayer-based spin Hall nano-oscillators (SHNOs)—a sub-class of spintronic oscillator devices—have promising potential toward realizing low-power physical reservoir computing systems because of their inherent nonlinearity and miniature form factor. However, most of the studies on SHNOs indicate that an external biasing magnetic field is necessary for their operation, creating a bottleneck for their practical implementation in designing small and compact RC hardware. In this report, using micromagnetic simulation, we demonstrate biasing field-free operation of a FM/NM bilayer-based SHNO by exploiting the magnetic anisotropy. Our results reveal that the magnetic anisotropy in the FM layer provides active control over the DC tunability of auto-oscillation frequency and the threshold value of current needed for sustained auto-oscillations. We show that the increase in uniaxial anisotropy substantially modifies the spatial profile of auto-oscillation and eventually leads to the reduction in the threshold current for auto-oscillation, which could be utilized to design low-power computing hardware using SHNO devices.</description><subject>Active control</subject><subject>Anisotropy</subject><subject>Applied physics</subject><subject>Bilayers</subject><subject>Computation</subject><subject>Ferromagnetism</subject><subject>Form factors</subject><subject>Hardware</subject><subject>Magnetic anisotropy</subject><subject>Oscillators</subject><subject>Power management</subject><subject>Threshold currents</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCtbVg_-g4Ekh66TTJO1xWdQVFrzoOaRpCllqU5OssP_eShc9CJ6GgYd3Pgi5ZrBkIPCeL4EhiKI8IRkDKSkyVp2SDACQipqzc3IR425qeYGYEbkaXPQp-PFAdYwuJtvmjdORdsHaPI5uyDe67_NBD576aFzf6-TDJTnrdB_t1bEuyNvjw-t6Q7cvT8_r1ZYaRJEoClNWWhTMYGvKWpbAZMdNzbmueVWYaTvbNI1FWVpZoRYohQUDragtdFDhgtzMuWPwH3sbk9r5fRimkaqQUhSiRIGTup2VCT7GYDs1Bveuw0ExUN9_UVwd_zLZu9lOtySdnB9-8KcPv1CNbfcf_pv8Bbl6byI</recordid><startdate>20230213</startdate><enddate>20230213</enddate><creator>Manna, Sourabh</creator><creator>Medwal, Rohit</creator><creator>Gupta, Surbhi</creator><creator>Mohan, John Rex</creator><creator>Fukuma, Yasuhiro</creator><creator>Rawat, Rajdeep Singh</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0003-1708-1671</orcidid><orcidid>https://orcid.org/0000-0003-3622-5968</orcidid><orcidid>https://orcid.org/0000-0002-1280-1644</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid></search><sort><creationdate>20230213</creationdate><title>Anisotropy-assisted bias-free spin Hall nano-oscillator</title><author>Manna, Sourabh ; Medwal, Rohit ; Gupta, Surbhi ; Mohan, John Rex ; Fukuma, Yasuhiro ; Rawat, Rajdeep Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-36c48a621c3dc4974017f5c955a9582c311ebbbe374e783a6376e0c0d69e0f083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active control</topic><topic>Anisotropy</topic><topic>Applied physics</topic><topic>Bilayers</topic><topic>Computation</topic><topic>Ferromagnetism</topic><topic>Form factors</topic><topic>Hardware</topic><topic>Magnetic anisotropy</topic><topic>Oscillators</topic><topic>Power management</topic><topic>Threshold currents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manna, Sourabh</creatorcontrib><creatorcontrib>Medwal, Rohit</creatorcontrib><creatorcontrib>Gupta, Surbhi</creatorcontrib><creatorcontrib>Mohan, John Rex</creatorcontrib><creatorcontrib>Fukuma, Yasuhiro</creatorcontrib><creatorcontrib>Rawat, Rajdeep Singh</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manna, Sourabh</au><au>Medwal, Rohit</au><au>Gupta, Surbhi</au><au>Mohan, John Rex</au><au>Fukuma, Yasuhiro</au><au>Rawat, Rajdeep Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anisotropy-assisted bias-free spin Hall nano-oscillator</atitle><jtitle>Applied physics letters</jtitle><date>2023-02-13</date><risdate>2023</risdate><volume>122</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Ferromagnet/nonmagnet (FM/NM) bilayer-based spin Hall nano-oscillators (SHNOs)—a sub-class of spintronic oscillator devices—have promising potential toward realizing low-power physical reservoir computing systems because of their inherent nonlinearity and miniature form factor. However, most of the studies on SHNOs indicate that an external biasing magnetic field is necessary for their operation, creating a bottleneck for their practical implementation in designing small and compact RC hardware. In this report, using micromagnetic simulation, we demonstrate biasing field-free operation of a FM/NM bilayer-based SHNO by exploiting the magnetic anisotropy. Our results reveal that the magnetic anisotropy in the FM layer provides active control over the DC tunability of auto-oscillation frequency and the threshold value of current needed for sustained auto-oscillations. We show that the increase in uniaxial anisotropy substantially modifies the spatial profile of auto-oscillation and eventually leads to the reduction in the threshold current for auto-oscillation, which could be utilized to design low-power computing hardware using SHNO devices.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0130624</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3161-2486</orcidid><orcidid>https://orcid.org/0000-0003-0648-2592</orcidid><orcidid>https://orcid.org/0000-0003-1708-1671</orcidid><orcidid>https://orcid.org/0000-0003-3622-5968</orcidid><orcidid>https://orcid.org/0000-0002-1280-1644</orcidid><orcidid>https://orcid.org/0000-0002-5443-4694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2023-02, Vol.122 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0130624
source AIP Journals Complete; Alma/SFX Local Collection
subjects Active control
Anisotropy
Applied physics
Bilayers
Computation
Ferromagnetism
Form factors
Hardware
Magnetic anisotropy
Oscillators
Power management
Threshold currents
title Anisotropy-assisted bias-free spin Hall nano-oscillator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A36%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anisotropy-assisted%20bias-free%20spin%20Hall%20nano-oscillator&rft.jtitle=Applied%20physics%20letters&rft.au=Manna,%20Sourabh&rft.date=2023-02-13&rft.volume=122&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0130624&rft_dat=%3Cproquest_cross%3E2776264363%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2776264363&rft_id=info:pmid/&rfr_iscdi=true