Photocatalytic activity of MoS2 with water monolayers: Global optimization

Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-11, Vol.157 (18), p.184703-184703
1. Verfasser: Zhang, Yachao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184703
container_issue 18
container_start_page 184703
container_title The Journal of chemical physics
container_volume 157
creator Zhang, Yachao
description Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reactivity. Here, we determine the structures of water monolayers on MoS2 using global optimizations achieved by molecular dynamics in combination with local minimization. It is shown that cyclic water clusters are formed on a surface through a hydrogen-bonding network. The absolute band edge positions are explored taking into account the derivative discontinuity of the exchange–correlation functional. Shifts in band edges are observed with the increase in H2O coverage, while bandgaps tend to be slightly decreased. In particular, the band alignment relative to water redox potentials has been investigated in detail. We find that the dimer configuration is likely to suppress the hydrogen evolution reaction (HER), while the polygon clusters lift the conduction band by 0.2–0.7 eV, and thus, they would enhance HER. This effect is explained in terms of the linear dependence of the band edge offset on an interface electric dipole arising from water assemblies.
doi_str_mv 10.1063/5.0123684
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0123684</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737118944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-a7fb7d891c345653a03f964585e732a87ab7040d80f97a2663ea23df544462083</originalsourceid><addsrcrecordid>eNqd0M9LwzAUwPEgCs7pwf-g4EWFzpcfTVJvMnQqEwX1XLI0ZRltM5Nso_71dk4QPHp6lw-P974InWIYYeD0KhsBJpRLtocGGGSeCp7DPhoAEJzmHPghOgphAQBYEDZAjy9zF51WUdVdtDpROtq1jV3iquTJvZJkY-M82ahofNK41tWqMz5cJ5PazVSduGW0jf1U0br2GB1Uqg7m5GcO0fvd7dv4Pp0-Tx7GN9NUkxxiqkQ1E6XMsaYs4xlVQKucs0xmRlCipFAzAQxKCVUuFOGcGkVoWWWMMU5A0iE63-1devexMiEWjQ3a1LVqjVuFgggqMJY5Yz09-0MXbuXb_rqtorxvw0ivLnZKexeCN1Wx9LZRviswFNuqRVb8VO3t5c4GbeP32__Da-d_YbEsK_oF7CyDtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2733669042</pqid></control><display><type>article</type><title>Photocatalytic activity of MoS2 with water monolayers: Global optimization</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Yachao</creator><creatorcontrib>Zhang, Yachao</creatorcontrib><description>Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reactivity. Here, we determine the structures of water monolayers on MoS2 using global optimizations achieved by molecular dynamics in combination with local minimization. It is shown that cyclic water clusters are formed on a surface through a hydrogen-bonding network. The absolute band edge positions are explored taking into account the derivative discontinuity of the exchange–correlation functional. Shifts in band edges are observed with the increase in H2O coverage, while bandgaps tend to be slightly decreased. In particular, the band alignment relative to water redox potentials has been investigated in detail. We find that the dimer configuration is likely to suppress the hydrogen evolution reaction (HER), while the polygon clusters lift the conduction band by 0.2–0.7 eV, and thus, they would enhance HER. This effect is explained in terms of the linear dependence of the band edge offset on an interface electric dipole arising from water assemblies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0123684</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Catalytic activity ; Clusters ; Conduction bands ; Electric dipoles ; Electronic structure ; Global optimization ; Hydrogen bonding ; Hydrogen evolution reactions ; Molecular dynamics ; Molybdenum disulfide ; Monolayers ; Photocatalysis ; Physics ; Water chemistry ; Water splitting</subject><ispartof>The Journal of chemical physics, 2022-11, Vol.157 (18), p.184703-184703</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-a7fb7d891c345653a03f964585e732a87ab7040d80f97a2663ea23df544462083</citedby><cites>FETCH-LOGICAL-c290t-a7fb7d891c345653a03f964585e732a87ab7040d80f97a2663ea23df544462083</cites><orcidid>0000-0001-9233-876X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0123684$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Zhang, Yachao</creatorcontrib><title>Photocatalytic activity of MoS2 with water monolayers: Global optimization</title><title>The Journal of chemical physics</title><description>Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reactivity. Here, we determine the structures of water monolayers on MoS2 using global optimizations achieved by molecular dynamics in combination with local minimization. It is shown that cyclic water clusters are formed on a surface through a hydrogen-bonding network. The absolute band edge positions are explored taking into account the derivative discontinuity of the exchange–correlation functional. Shifts in band edges are observed with the increase in H2O coverage, while bandgaps tend to be slightly decreased. In particular, the band alignment relative to water redox potentials has been investigated in detail. We find that the dimer configuration is likely to suppress the hydrogen evolution reaction (HER), while the polygon clusters lift the conduction band by 0.2–0.7 eV, and thus, they would enhance HER. This effect is explained in terms of the linear dependence of the band edge offset on an interface electric dipole arising from water assemblies.</description><subject>Catalytic activity</subject><subject>Clusters</subject><subject>Conduction bands</subject><subject>Electric dipoles</subject><subject>Electronic structure</subject><subject>Global optimization</subject><subject>Hydrogen bonding</subject><subject>Hydrogen evolution reactions</subject><subject>Molecular dynamics</subject><subject>Molybdenum disulfide</subject><subject>Monolayers</subject><subject>Photocatalysis</subject><subject>Physics</subject><subject>Water chemistry</subject><subject>Water splitting</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M9LwzAUwPEgCs7pwf-g4EWFzpcfTVJvMnQqEwX1XLI0ZRltM5Nso_71dk4QPHp6lw-P974InWIYYeD0KhsBJpRLtocGGGSeCp7DPhoAEJzmHPghOgphAQBYEDZAjy9zF51WUdVdtDpROtq1jV3iquTJvZJkY-M82ahofNK41tWqMz5cJ5PazVSduGW0jf1U0br2GB1Uqg7m5GcO0fvd7dv4Pp0-Tx7GN9NUkxxiqkQ1E6XMsaYs4xlVQKucs0xmRlCipFAzAQxKCVUuFOGcGkVoWWWMMU5A0iE63-1devexMiEWjQ3a1LVqjVuFgggqMJY5Yz09-0MXbuXb_rqtorxvw0ivLnZKexeCN1Wx9LZRviswFNuqRVb8VO3t5c4GbeP32__Da-d_YbEsK_oF7CyDtg</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Zhang, Yachao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9233-876X</orcidid></search><sort><creationdate>20221114</creationdate><title>Photocatalytic activity of MoS2 with water monolayers: Global optimization</title><author>Zhang, Yachao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-a7fb7d891c345653a03f964585e732a87ab7040d80f97a2663ea23df544462083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Catalytic activity</topic><topic>Clusters</topic><topic>Conduction bands</topic><topic>Electric dipoles</topic><topic>Electronic structure</topic><topic>Global optimization</topic><topic>Hydrogen bonding</topic><topic>Hydrogen evolution reactions</topic><topic>Molecular dynamics</topic><topic>Molybdenum disulfide</topic><topic>Monolayers</topic><topic>Photocatalysis</topic><topic>Physics</topic><topic>Water chemistry</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Yachao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Yachao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photocatalytic activity of MoS2 with water monolayers: Global optimization</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>157</volume><issue>18</issue><spage>184703</spage><epage>184703</epage><pages>184703-184703</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Atomically thin MoS2 has emerged to be promising for photocatalytic water splitting benefiting from its suitable geometrical and electronic structure for light harvesting. A better understanding of how water molecules affect the band edge levels of MoS2 is critical for promoting the interfacial reactivity. Here, we determine the structures of water monolayers on MoS2 using global optimizations achieved by molecular dynamics in combination with local minimization. It is shown that cyclic water clusters are formed on a surface through a hydrogen-bonding network. The absolute band edge positions are explored taking into account the derivative discontinuity of the exchange–correlation functional. Shifts in band edges are observed with the increase in H2O coverage, while bandgaps tend to be slightly decreased. In particular, the band alignment relative to water redox potentials has been investigated in detail. We find that the dimer configuration is likely to suppress the hydrogen evolution reaction (HER), while the polygon clusters lift the conduction band by 0.2–0.7 eV, and thus, they would enhance HER. This effect is explained in terms of the linear dependence of the band edge offset on an interface electric dipole arising from water assemblies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0123684</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9233-876X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-11, Vol.157 (18), p.184703-184703
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0123684
source AIP Journals Complete; Alma/SFX Local Collection
subjects Catalytic activity
Clusters
Conduction bands
Electric dipoles
Electronic structure
Global optimization
Hydrogen bonding
Hydrogen evolution reactions
Molecular dynamics
Molybdenum disulfide
Monolayers
Photocatalysis
Physics
Water chemistry
Water splitting
title Photocatalytic activity of MoS2 with water monolayers: Global optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A34%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photocatalytic%20activity%20of%20MoS2%20with%20water%20monolayers:%20Global%20optimization&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Zhang,%20Yachao&rft.date=2022-11-14&rft.volume=157&rft.issue=18&rft.spage=184703&rft.epage=184703&rft.pages=184703-184703&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0123684&rft_dat=%3Cproquest_cross%3E2737118944%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2733669042&rft_id=info:pmid/&rfr_iscdi=true