Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries

Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the un...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-11, Vol.121 (20)
Hauptverfasser: Xie, Zhi-Yu, Xing, Xuanxuan, Yu, Lianzheng, Chang, Yu-Xin, Yin, Ya-Xia, Xu, Li, Yan, Mengmeng, Xu, Sailong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 121
creator Xie, Zhi-Yu
Xing, Xuanxuan
Yu, Lianzheng
Chang, Yu-Xin
Yin, Ya-Xia
Xu, Li
Yan, Mengmeng
Xu, Sailong
description Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the undesirable phase transformation of P2−O2 and the Na+/vacancy ordering, respectively. Herein, a Mg/Ti co-doped P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 layered oxide is demonstrated as a high-efficiency cathode material for SIBs. The cathode delivers a high reversible capacity of 135.5 mAh g−1, good cycling stability (82.7 mAh g−1 upon 100 cycles at 0.1C), and an attractive energy density of 479.4 Wh Kg−1. Furthermore, the phase transition from the undesirable P2−O2 to the reversible P2−OP4 demonstrated by in situ XRD and the partially suppressed Na+/vacancy ordering as well as the improved electronic and ionic conductivities all give rise to the enhancement. These results show the important role of cationic co-doping in designing and preparing high-efficiency layered oxide cathode materials for SIBs.
doi_str_mv 10.1063/5.0121824
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0121824</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2736469264</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-cea26e1517d7f838c8b7fac9475ee1014a427e988907287b11d978f88253e83f3</originalsourceid><addsrcrecordid>eNqd0M1LwzAUAPAgCs7pwf-g4EkhXT6aJj3K8AvWzcM8hyxNugzb1KQT_O_N2MC7p_fBj_d4D4BbjHKMSjpjOcIEC1KcgQlGnEOKsTgHE4QQhWXF8CW4inGXSkYonQBbt7O1yxo_uL7NtIdD8J0fTZNtXbuFgwnWh0712mTvBC4Vyku-dCgnom5Rjljdpw5Zu0O-IlnCWfSN23fQ-T7bqHE0wZl4DS6s-ozm5hSn4OP5aT1_hYvVy9v8cQE1YXyE2ihSGswwb7gVVGix4VbpquDMGIxwoQrCTSVEhTgRfINxU3FhhSCMGkEtnYK749x0xtfexFHu_D70aaUknJZFWZGySOr-qHTwMQZj5RBcp8KPxEge3iiZPL0x2YejjdqNakxX_Q9_-_AH5dBY-guarXvK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2736469264</pqid></control><display><type>article</type><title>Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xie, Zhi-Yu ; Xing, Xuanxuan ; Yu, Lianzheng ; Chang, Yu-Xin ; Yin, Ya-Xia ; Xu, Li ; Yan, Mengmeng ; Xu, Sailong</creator><creatorcontrib>Xie, Zhi-Yu ; Xing, Xuanxuan ; Yu, Lianzheng ; Chang, Yu-Xin ; Yin, Ya-Xia ; Xu, Li ; Yan, Mengmeng ; Xu, Sailong</creatorcontrib><description>Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the undesirable phase transformation of P2−O2 and the Na+/vacancy ordering, respectively. Herein, a Mg/Ti co-doped P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 layered oxide is demonstrated as a high-efficiency cathode material for SIBs. The cathode delivers a high reversible capacity of 135.5 mAh g−1, good cycling stability (82.7 mAh g−1 upon 100 cycles at 0.1C), and an attractive energy density of 479.4 Wh Kg−1. Furthermore, the phase transition from the undesirable P2−O2 to the reversible P2−OP4 demonstrated by in situ XRD and the partially suppressed Na+/vacancy ordering as well as the improved electronic and ionic conductivities all give rise to the enhancement. These results show the important role of cationic co-doping in designing and preparing high-efficiency layered oxide cathode materials for SIBs.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0121824</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Cathodes ; Doping ; Electrode materials ; Phase transitions ; Sodium ; Sodium-ion batteries ; Structural damage ; Titanium ; Transition metals</subject><ispartof>Applied physics letters, 2022-11, Vol.121 (20)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-cea26e1517d7f838c8b7fac9475ee1014a427e988907287b11d978f88253e83f3</citedby><cites>FETCH-LOGICAL-c257t-cea26e1517d7f838c8b7fac9475ee1014a427e988907287b11d978f88253e83f3</cites><orcidid>0000-0002-0983-9916 ; 0000-0002-1999-9323</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0121824$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Xie, Zhi-Yu</creatorcontrib><creatorcontrib>Xing, Xuanxuan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Chang, Yu-Xin</creatorcontrib><creatorcontrib>Yin, Ya-Xia</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><title>Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries</title><title>Applied physics letters</title><description>Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the undesirable phase transformation of P2−O2 and the Na+/vacancy ordering, respectively. Herein, a Mg/Ti co-doped P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 layered oxide is demonstrated as a high-efficiency cathode material for SIBs. The cathode delivers a high reversible capacity of 135.5 mAh g−1, good cycling stability (82.7 mAh g−1 upon 100 cycles at 0.1C), and an attractive energy density of 479.4 Wh Kg−1. Furthermore, the phase transition from the undesirable P2−O2 to the reversible P2−OP4 demonstrated by in situ XRD and the partially suppressed Na+/vacancy ordering as well as the improved electronic and ionic conductivities all give rise to the enhancement. These results show the important role of cationic co-doping in designing and preparing high-efficiency layered oxide cathode materials for SIBs.</description><subject>Applied physics</subject><subject>Cathodes</subject><subject>Doping</subject><subject>Electrode materials</subject><subject>Phase transitions</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Structural damage</subject><subject>Titanium</subject><subject>Transition metals</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqd0M1LwzAUAPAgCs7pwf-g4EkhXT6aJj3K8AvWzcM8hyxNugzb1KQT_O_N2MC7p_fBj_d4D4BbjHKMSjpjOcIEC1KcgQlGnEOKsTgHE4QQhWXF8CW4inGXSkYonQBbt7O1yxo_uL7NtIdD8J0fTZNtXbuFgwnWh0712mTvBC4Vyku-dCgnom5Rjljdpw5Zu0O-IlnCWfSN23fQ-T7bqHE0wZl4DS6s-ozm5hSn4OP5aT1_hYvVy9v8cQE1YXyE2ihSGswwb7gVVGix4VbpquDMGIxwoQrCTSVEhTgRfINxU3FhhSCMGkEtnYK749x0xtfexFHu_D70aaUknJZFWZGySOr-qHTwMQZj5RBcp8KPxEge3iiZPL0x2YejjdqNakxX_Q9_-_AH5dBY-guarXvK</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Xie, Zhi-Yu</creator><creator>Xing, Xuanxuan</creator><creator>Yu, Lianzheng</creator><creator>Chang, Yu-Xin</creator><creator>Yin, Ya-Xia</creator><creator>Xu, Li</creator><creator>Yan, Mengmeng</creator><creator>Xu, Sailong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0983-9916</orcidid><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid></search><sort><creationdate>20221114</creationdate><title>Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries</title><author>Xie, Zhi-Yu ; Xing, Xuanxuan ; Yu, Lianzheng ; Chang, Yu-Xin ; Yin, Ya-Xia ; Xu, Li ; Yan, Mengmeng ; Xu, Sailong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-cea26e1517d7f838c8b7fac9475ee1014a427e988907287b11d978f88253e83f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Cathodes</topic><topic>Doping</topic><topic>Electrode materials</topic><topic>Phase transitions</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Structural damage</topic><topic>Titanium</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Zhi-Yu</creatorcontrib><creatorcontrib>Xing, Xuanxuan</creatorcontrib><creatorcontrib>Yu, Lianzheng</creatorcontrib><creatorcontrib>Chang, Yu-Xin</creatorcontrib><creatorcontrib>Yin, Ya-Xia</creatorcontrib><creatorcontrib>Xu, Li</creatorcontrib><creatorcontrib>Yan, Mengmeng</creatorcontrib><creatorcontrib>Xu, Sailong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Zhi-Yu</au><au>Xing, Xuanxuan</au><au>Yu, Lianzheng</au><au>Chang, Yu-Xin</au><au>Yin, Ya-Xia</au><au>Xu, Li</au><au>Yan, Mengmeng</au><au>Xu, Sailong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries</atitle><jtitle>Applied physics letters</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>121</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Transition-metal layered oxides (such as P2-Na2/3Ni1/3Mn2/3O2) are suggested as one type of the most potential cathode candidates for sodium ion batteries (SIBs) owing to their high capacity and low cost; however, they suffer from the structural damage and sluggish Na+ kinetics resulting from the undesirable phase transformation of P2−O2 and the Na+/vacancy ordering, respectively. Herein, a Mg/Ti co-doped P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 layered oxide is demonstrated as a high-efficiency cathode material for SIBs. The cathode delivers a high reversible capacity of 135.5 mAh g−1, good cycling stability (82.7 mAh g−1 upon 100 cycles at 0.1C), and an attractive energy density of 479.4 Wh Kg−1. Furthermore, the phase transition from the undesirable P2−O2 to the reversible P2−OP4 demonstrated by in situ XRD and the partially suppressed Na+/vacancy ordering as well as the improved electronic and ionic conductivities all give rise to the enhancement. These results show the important role of cationic co-doping in designing and preparing high-efficiency layered oxide cathode materials for SIBs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0121824</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0983-9916</orcidid><orcidid>https://orcid.org/0000-0002-1999-9323</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-11, Vol.121 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0121824
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Cathodes
Doping
Electrode materials
Phase transitions
Sodium
Sodium-ion batteries
Structural damage
Titanium
Transition metals
title Mg/Ti doping co-promoted high-performance P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2 for sodium-ion batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T16%3A45%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg/Ti%20doping%20co-promoted%20high-performance%20P2-Na0.67Ni0.28Mg0.05Mn0.62Ti0.05O2%20for%20sodium-ion%20batteries&rft.jtitle=Applied%20physics%20letters&rft.au=Xie,%20Zhi-Yu&rft.date=2022-11-14&rft.volume=121&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0121824&rft_dat=%3Cproquest_cross%3E2736469264%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2736469264&rft_id=info:pmid/&rfr_iscdi=true