Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport

Electron transfer (ET), electric double layer (EDL) charging, and ion transport (IT) are three elementary physicochemical processes in electrochemistry. These processes are coupled with each other in the way that the local reaction environment for the ET is shaped by EDL charging, which is nothing b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-11, Vol.157 (18), p.184704-184704
Hauptverfasser: Li, Chen Kun, Zhang, Jianbo, Huang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 184704
container_issue 18
container_start_page 184704
container_title The Journal of chemical physics
container_volume 157
creator Li, Chen Kun
Zhang, Jianbo
Huang, Jun
description Electron transfer (ET), electric double layer (EDL) charging, and ion transport (IT) are three elementary physicochemical processes in electrochemistry. These processes are coupled with each other in the way that the local reaction environment for the ET is shaped by EDL charging, which is nothing but IT in a nanoscale nonelectroneutral region. Herein, we investigate fingerprints of the coupling between these processes in electrochemical impedance spectroscopy. EDL charging and IT are described uniformly using the Poisson–Nernst–Planck theory, and interfacial ET is described using the Frumkin–Butler–Volmer theory. Different diffusion coefficients for cations and anions (D+ ≠ D−) are considered. Exact analytical expressions are obtained when the potential of zero charge (Epzc), the equilibrium potential of the reaction (Eeq), and electrode potential (EM) are equal. The analytical solution shows that a decoupling treatment is valid only for the case of D+ = D−. Using a new scheme of calculating impedance response at any electrode potential, we observe an inductive loop in the low frequency range, which is a clear impedance fingerprint of the coupling effects.
doi_str_mv 10.1063/5.0119592
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0119592</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2737118655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-2004e6920a31d9c13d3ac296a56e101b3b3cf1714cdf1937bd75642ae7a47c253</originalsourceid><addsrcrecordid>eNp9kc9q3DAQxkVpoNskh76BoZc24M2MZEurYwn5Ywj0kpyNVh43Dl7JlbQt-zx50cjsJoEUehqY7_d9M8ww9gVhiSDFeb0ERF1r_oEtEFa6VFLDR7YA4FhqCfIT-xzjIwCg4tWCPTWbiTrjLBWB4uRdpML3BY1kU_D2gTaDNWMxuEShN5bismiaZllcDe4XhSlkIc4G67fTmHuxWFP6S-ReLUO2H-JckYJxsaeQhxmbhtwxrnuRx12icnoweYXhhZ18SCfsqDdjpNNDPWb3V5d3Fzfl7c_r5uLHbWm5hlRygIqk5mAEdtqi6ITJijS1JARci7WwPSqsbNejFmrdqVpW3JAylbK8Fsfs2z53Cv73lmJqN0O0NI7Gkd_GliuhEFeyntGv79BHvw0ubzdTVQVC61Wmvu8pG3yMgfo2H2xjwq5FaOd3tXV7eFdmz_ZstEMy82le4T8-vIHt1PX_g_9NfgZy76Zv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2734403998</pqid></control><display><type>article</type><title>Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Chen Kun ; Zhang, Jianbo ; Huang, Jun</creator><creatorcontrib>Li, Chen Kun ; Zhang, Jianbo ; Huang, Jun</creatorcontrib><description>Electron transfer (ET), electric double layer (EDL) charging, and ion transport (IT) are three elementary physicochemical processes in electrochemistry. These processes are coupled with each other in the way that the local reaction environment for the ET is shaped by EDL charging, which is nothing but IT in a nanoscale nonelectroneutral region. Herein, we investigate fingerprints of the coupling between these processes in electrochemical impedance spectroscopy. EDL charging and IT are described uniformly using the Poisson–Nernst–Planck theory, and interfacial ET is described using the Frumkin–Butler–Volmer theory. Different diffusion coefficients for cations and anions (D+ ≠ D−) are considered. Exact analytical expressions are obtained when the potential of zero charge (Epzc), the equilibrium potential of the reaction (Eeq), and electrode potential (EM) are equal. The analytical solution shows that a decoupling treatment is valid only for the case of D+ = D−. Using a new scheme of calculating impedance response at any electrode potential, we observe an inductive loop in the low frequency range, which is a clear impedance fingerprint of the coupling effects.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0119592</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Charging ; Couplings ; Decoupling ; Electric double layer ; Electrochemical impedance spectroscopy ; Electrochemistry ; Electrode potentials ; Electrodes ; Electron transfer ; Exact solutions ; Fingerprints ; Frequency ranges ; Ion transport ; Mathematical analysis</subject><ispartof>The Journal of chemical physics, 2022-11, Vol.157 (18), p.184704-184704</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-2004e6920a31d9c13d3ac296a56e101b3b3cf1714cdf1937bd75642ae7a47c253</citedby><cites>FETCH-LOGICAL-c290t-2004e6920a31d9c13d3ac296a56e101b3b3cf1714cdf1937bd75642ae7a47c253</cites><orcidid>0000-0001-5574-0805 ; 0000-0002-2964-8084 ; 0000-0002-1668-5361</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0119592$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Li, Chen Kun</creatorcontrib><creatorcontrib>Zhang, Jianbo</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><title>Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport</title><title>The Journal of chemical physics</title><description>Electron transfer (ET), electric double layer (EDL) charging, and ion transport (IT) are three elementary physicochemical processes in electrochemistry. These processes are coupled with each other in the way that the local reaction environment for the ET is shaped by EDL charging, which is nothing but IT in a nanoscale nonelectroneutral region. Herein, we investigate fingerprints of the coupling between these processes in electrochemical impedance spectroscopy. EDL charging and IT are described uniformly using the Poisson–Nernst–Planck theory, and interfacial ET is described using the Frumkin–Butler–Volmer theory. Different diffusion coefficients for cations and anions (D+ ≠ D−) are considered. Exact analytical expressions are obtained when the potential of zero charge (Epzc), the equilibrium potential of the reaction (Eeq), and electrode potential (EM) are equal. The analytical solution shows that a decoupling treatment is valid only for the case of D+ = D−. Using a new scheme of calculating impedance response at any electrode potential, we observe an inductive loop in the low frequency range, which is a clear impedance fingerprint of the coupling effects.</description><subject>Charging</subject><subject>Couplings</subject><subject>Decoupling</subject><subject>Electric double layer</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemistry</subject><subject>Electrode potentials</subject><subject>Electrodes</subject><subject>Electron transfer</subject><subject>Exact solutions</subject><subject>Fingerprints</subject><subject>Frequency ranges</subject><subject>Ion transport</subject><subject>Mathematical analysis</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kc9q3DAQxkVpoNskh76BoZc24M2MZEurYwn5Ywj0kpyNVh43Dl7JlbQt-zx50cjsJoEUehqY7_d9M8ww9gVhiSDFeb0ERF1r_oEtEFa6VFLDR7YA4FhqCfIT-xzjIwCg4tWCPTWbiTrjLBWB4uRdpML3BY1kU_D2gTaDNWMxuEShN5bismiaZllcDe4XhSlkIc4G67fTmHuxWFP6S-ReLUO2H-JckYJxsaeQhxmbhtwxrnuRx12icnoweYXhhZ18SCfsqDdjpNNDPWb3V5d3Fzfl7c_r5uLHbWm5hlRygIqk5mAEdtqi6ITJijS1JARci7WwPSqsbNejFmrdqVpW3JAylbK8Fsfs2z53Cv73lmJqN0O0NI7Gkd_GliuhEFeyntGv79BHvw0ubzdTVQVC61Wmvu8pG3yMgfo2H2xjwq5FaOd3tXV7eFdmz_ZstEMy82le4T8-vIHt1PX_g_9NfgZy76Zv</recordid><startdate>20221114</startdate><enddate>20221114</enddate><creator>Li, Chen Kun</creator><creator>Zhang, Jianbo</creator><creator>Huang, Jun</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5574-0805</orcidid><orcidid>https://orcid.org/0000-0002-2964-8084</orcidid><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid></search><sort><creationdate>20221114</creationdate><title>Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport</title><author>Li, Chen Kun ; Zhang, Jianbo ; Huang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-2004e6920a31d9c13d3ac296a56e101b3b3cf1714cdf1937bd75642ae7a47c253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charging</topic><topic>Couplings</topic><topic>Decoupling</topic><topic>Electric double layer</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemistry</topic><topic>Electrode potentials</topic><topic>Electrodes</topic><topic>Electron transfer</topic><topic>Exact solutions</topic><topic>Fingerprints</topic><topic>Frequency ranges</topic><topic>Ion transport</topic><topic>Mathematical analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Chen Kun</creatorcontrib><creatorcontrib>Zhang, Jianbo</creatorcontrib><creatorcontrib>Huang, Jun</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Chen Kun</au><au>Zhang, Jianbo</au><au>Huang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-11-14</date><risdate>2022</risdate><volume>157</volume><issue>18</issue><spage>184704</spage><epage>184704</epage><pages>184704-184704</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Electron transfer (ET), electric double layer (EDL) charging, and ion transport (IT) are three elementary physicochemical processes in electrochemistry. These processes are coupled with each other in the way that the local reaction environment for the ET is shaped by EDL charging, which is nothing but IT in a nanoscale nonelectroneutral region. Herein, we investigate fingerprints of the coupling between these processes in electrochemical impedance spectroscopy. EDL charging and IT are described uniformly using the Poisson–Nernst–Planck theory, and interfacial ET is described using the Frumkin–Butler–Volmer theory. Different diffusion coefficients for cations and anions (D+ ≠ D−) are considered. Exact analytical expressions are obtained when the potential of zero charge (Epzc), the equilibrium potential of the reaction (Eeq), and electrode potential (EM) are equal. The analytical solution shows that a decoupling treatment is valid only for the case of D+ = D−. Using a new scheme of calculating impedance response at any electrode potential, we observe an inductive loop in the low frequency range, which is a clear impedance fingerprint of the coupling effects.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0119592</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5574-0805</orcidid><orcidid>https://orcid.org/0000-0002-2964-8084</orcidid><orcidid>https://orcid.org/0000-0002-1668-5361</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-11, Vol.157 (18), p.184704-184704
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0119592
source AIP Journals Complete; Alma/SFX Local Collection
subjects Charging
Couplings
Decoupling
Electric double layer
Electrochemical impedance spectroscopy
Electrochemistry
Electrode potentials
Electrodes
Electron transfer
Exact solutions
Fingerprints
Frequency ranges
Ion transport
Mathematical analysis
title Impedance response of electrochemical interfaces. III. Fingerprints of couplings between interfacial electron transfer reaction and electrolyte-phase ion transport
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A00%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impedance%20response%20of%20electrochemical%20interfaces.%20III.%20Fingerprints%20of%20couplings%20between%20interfacial%20electron%20transfer%20reaction%20and%20electrolyte-phase%20ion%20transport&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Li,%20Chen%20Kun&rft.date=2022-11-14&rft.volume=157&rft.issue=18&rft.spage=184704&rft.epage=184704&rft.pages=184704-184704&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0119592&rft_dat=%3Cproquest_cross%3E2737118655%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2734403998&rft_id=info:pmid/&rfr_iscdi=true