Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia
Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,”...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-10, Vol.34 (10) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Jiang, Xinyu Huang, Weixi Xu, Chunxiao Zhao, Lihao |
description | Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate. |
doi_str_mv | 10.1063/5.0114610 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0114610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722587522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR-bZPcoxS8oeNFzSNOJm7Ju1iSl6K83ZXv2NHN4ZoZ5EbqmZEGJ5PdiQSitJSUnaEZJ01ZKSnl66BWppOT0HF2ktCWE8JbJGbLLzoTsLY4hm-zDgIPDBjs_-AxV8r-A09hBDH5jejyaWGwP2BeXrO_7MjN84tSBidj1YZ_w3ueutDu_KQqKN5fozJk-wdWxztHH0-P78qVavT2_Lh9WlWWM5cq21ikKQqwFFdQKRQUDQZmpeQ0Ntw13nENTEyJAGquUg9o0klnbtmK9sXyObqa9YwzfO0hZb8MuDuWkZoox0SjBWFG3k7IxpBTB6TH6LxN_NCX6kKEW-phhsXeTLb9O8fyD_wAfanEv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722587522</pqid></control><display><type>article</type><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</creator><creatorcontrib>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</creatorcontrib><description>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0114610</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Direct numerical simulation ; Fluid dynamics ; Fluid flow ; Fluid inertia ; Liapunov exponents ; Physics ; Prolate spheroids ; Reynolds number ; Rotating spheres ; Rotation ; Shear flow ; Shear rate</subject><ispartof>Physics of fluids (1994), 2022-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</citedby><cites>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</cites><orcidid>0000-0001-8418-0691 ; 0000-0002-3642-3051 ; 0000-0001-5292-8052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><title>Physics of fluids (1994)</title><description>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</description><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid inertia</subject><subject>Liapunov exponents</subject><subject>Physics</subject><subject>Prolate spheroids</subject><subject>Reynolds number</subject><subject>Rotating spheres</subject><subject>Rotation</subject><subject>Shear flow</subject><subject>Shear rate</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR-bZPcoxS8oeNFzSNOJm7Ju1iSl6K83ZXv2NHN4ZoZ5EbqmZEGJ5PdiQSitJSUnaEZJ01ZKSnl66BWppOT0HF2ktCWE8JbJGbLLzoTsLY4hm-zDgIPDBjs_-AxV8r-A09hBDH5jejyaWGwP2BeXrO_7MjN84tSBidj1YZ_w3ueutDu_KQqKN5fozJk-wdWxztHH0-P78qVavT2_Lh9WlWWM5cq21ikKQqwFFdQKRQUDQZmpeQ0Ntw13nENTEyJAGquUg9o0klnbtmK9sXyObqa9YwzfO0hZb8MuDuWkZoox0SjBWFG3k7IxpBTB6TH6LxN_NCX6kKEW-phhsXeTLb9O8fyD_wAfanEv</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Jiang, Xinyu</creator><creator>Huang, Weixi</creator><creator>Xu, Chunxiao</creator><creator>Zhao, Lihao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8418-0691</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid><orcidid>https://orcid.org/0000-0001-5292-8052</orcidid></search><sort><creationdate>202210</creationdate><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><author>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid inertia</topic><topic>Liapunov exponents</topic><topic>Physics</topic><topic>Prolate spheroids</topic><topic>Reynolds number</topic><topic>Rotating spheres</topic><topic>Rotation</topic><topic>Shear flow</topic><topic>Shear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xinyu</au><au>Huang, Weixi</au><au>Xu, Chunxiao</au><au>Zhao, Lihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114610</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8418-0691</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid><orcidid>https://orcid.org/0000-0001-5292-8052</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-10, Vol.34 (10) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0114610 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Direct numerical simulation Fluid dynamics Fluid flow Fluid inertia Liapunov exponents Physics Prolate spheroids Reynolds number Rotating spheres Rotation Shear flow Shear rate |
title | Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20rotation%20of%20a%20finite-size%20spheroidal%20particle%20in%20oscillating%20shear%20flows%20with%20fluid%20inertia&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jiang,%20Xinyu&rft.date=2022-10&rft.volume=34&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0114610&rft_dat=%3Cproquest_cross%3E2722587522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722587522&rft_id=info:pmid/&rfr_iscdi=true |