Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia

Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,”...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-10, Vol.34 (10)
Hauptverfasser: Jiang, Xinyu, Huang, Weixi, Xu, Chunxiao, Zhao, Lihao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Jiang, Xinyu
Huang, Weixi
Xu, Chunxiao
Zhao, Lihao
description Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.
doi_str_mv 10.1063/5.0114610
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0114610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2722587522</sourcerecordid><originalsourceid>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR-bZPcoxS8oeNFzSNOJm7Ju1iSl6K83ZXv2NHN4ZoZ5EbqmZEGJ5PdiQSitJSUnaEZJ01ZKSnl66BWppOT0HF2ktCWE8JbJGbLLzoTsLY4hm-zDgIPDBjs_-AxV8r-A09hBDH5jejyaWGwP2BeXrO_7MjN84tSBidj1YZ_w3ueutDu_KQqKN5fozJk-wdWxztHH0-P78qVavT2_Lh9WlWWM5cq21ikKQqwFFdQKRQUDQZmpeQ0Ntw13nENTEyJAGquUg9o0klnbtmK9sXyObqa9YwzfO0hZb8MuDuWkZoox0SjBWFG3k7IxpBTB6TH6LxN_NCX6kKEW-phhsXeTLb9O8fyD_wAfanEv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2722587522</pqid></control><display><type>article</type><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</creator><creatorcontrib>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</creatorcontrib><description>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0114610</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Direct numerical simulation ; Fluid dynamics ; Fluid flow ; Fluid inertia ; Liapunov exponents ; Physics ; Prolate spheroids ; Reynolds number ; Rotating spheres ; Rotation ; Shear flow ; Shear rate</subject><ispartof>Physics of fluids (1994), 2022-10, Vol.34 (10)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</citedby><cites>FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</cites><orcidid>0000-0001-8418-0691 ; 0000-0002-3642-3051 ; 0000-0001-5292-8052</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><title>Physics of fluids (1994)</title><description>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</description><subject>Direct numerical simulation</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid inertia</subject><subject>Liapunov exponents</subject><subject>Physics</subject><subject>Prolate spheroids</subject><subject>Reynolds number</subject><subject>Rotating spheres</subject><subject>Rotation</subject><subject>Shear flow</subject><subject>Shear rate</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX8Q8KSwNR-bZPcoxS8oeNFzSNOJm7Ju1iSl6K83ZXv2NHN4ZoZ5EbqmZEGJ5PdiQSitJSUnaEZJ01ZKSnl66BWppOT0HF2ktCWE8JbJGbLLzoTsLY4hm-zDgIPDBjs_-AxV8r-A09hBDH5jejyaWGwP2BeXrO_7MjN84tSBidj1YZ_w3ueutDu_KQqKN5fozJk-wdWxztHH0-P78qVavT2_Lh9WlWWM5cq21ikKQqwFFdQKRQUDQZmpeQ0Ntw13nENTEyJAGquUg9o0klnbtmK9sXyObqa9YwzfO0hZb8MuDuWkZoox0SjBWFG3k7IxpBTB6TH6LxN_NCX6kKEW-phhsXeTLb9O8fyD_wAfanEv</recordid><startdate>202210</startdate><enddate>202210</enddate><creator>Jiang, Xinyu</creator><creator>Huang, Weixi</creator><creator>Xu, Chunxiao</creator><creator>Zhao, Lihao</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8418-0691</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid><orcidid>https://orcid.org/0000-0001-5292-8052</orcidid></search><sort><creationdate>202210</creationdate><title>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</title><author>Jiang, Xinyu ; Huang, Weixi ; Xu, Chunxiao ; Zhao, Lihao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c222t-c9cf71e55b5151c57152e512a434e83c83f33e84005e6ac77fe4a862cc995bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Direct numerical simulation</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid inertia</topic><topic>Liapunov exponents</topic><topic>Physics</topic><topic>Prolate spheroids</topic><topic>Reynolds number</topic><topic>Rotating spheres</topic><topic>Rotation</topic><topic>Shear flow</topic><topic>Shear rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xinyu</creatorcontrib><creatorcontrib>Huang, Weixi</creatorcontrib><creatorcontrib>Xu, Chunxiao</creatorcontrib><creatorcontrib>Zhao, Lihao</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xinyu</au><au>Huang, Weixi</au><au>Xu, Chunxiao</au><au>Zhao, Lihao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-10</date><risdate>2022</risdate><volume>34</volume><issue>10</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Rotational dynamics of a prolate spheroid in oscillating shear flows is studied by fully resolved direct numerical simulations with an immersed boundary method. In this flow configuration, we extend the work of Nilsen and Andersson [“Chaotic rotation of inertial spheroids in oscillating shear flow,” Phys. Fluids 25, 013303 (2013)] with focusing on the fluid inertia effect. We observe that the spheroid could rotate in chaotic and nonchaotic modes, which are identified by the sign of a largest Lyapunov exponent of the dynamic system. These two distinct rotation modes depend on both particle Reynolds number and oscillation frequency. For a certain Reynolds number, chaotic rotation appears when oscillation frequency is lower than a critical value, which decreases linearly with the increase of the particle Reynolds number. Based on this finding, we propose an empirical expression to predict the rotation mode. We, furthermore, discuss the mechanism of the emergence of the chaotic rotation, which is ascribed to a nonlinear interaction between time-varying orientation of the inertial spheroid and the oscillation of the shear rate.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114610</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8418-0691</orcidid><orcidid>https://orcid.org/0000-0002-3642-3051</orcidid><orcidid>https://orcid.org/0000-0001-5292-8052</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-10, Vol.34 (10)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0114610
source AIP Journals Complete; Alma/SFX Local Collection
subjects Direct numerical simulation
Fluid dynamics
Fluid flow
Fluid inertia
Liapunov exponents
Physics
Prolate spheroids
Reynolds number
Rotating spheres
Rotation
Shear flow
Shear rate
title Chaotic rotation of a finite-size spheroidal particle in oscillating shear flows with fluid inertia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A33%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chaotic%20rotation%20of%20a%20finite-size%20spheroidal%20particle%20in%20oscillating%20shear%20flows%20with%20fluid%20inertia&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Jiang,%20Xinyu&rft.date=2022-10&rft.volume=34&rft.issue=10&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0114610&rft_dat=%3Cproquest_cross%3E2722587522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2722587522&rft_id=info:pmid/&rfr_iscdi=true