Optimization design of 4H–SiC-based betavoltaic battery using 3H source
This paper describes the theoretical calculation and optimization design of the PN junction betavoltaic batteries with 4H–SiC-based energy converter and titanium tritide source. The self-absorption of radioactive isotope sources and the energy deposition distribution in the semiconductor converter a...
Gespeichert in:
Veröffentlicht in: | AIP advances 2022-10, Vol.12 (10), p.105302-105302-9 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 105302-9 |
---|---|
container_issue | 10 |
container_start_page | 105302 |
container_title | AIP advances |
container_volume | 12 |
creator | Zhang, Xue Zheng, Renzhou Wang, Yu Lu, Jingbin Zhang, Yuehui Chen, Ziyi Liu, Yumin Xu, Xu |
description | This paper describes the theoretical calculation and optimization design of the PN junction betavoltaic batteries with 4H–SiC-based energy converter and titanium tritide source. The self-absorption of radioactive isotope sources and the energy deposition distribution in the semiconductor converter are simulated using the Monte Carlo method. The relationship between doping concentrations and basic factors such as minority carrier diffusion lengths and the width of the depletion region are analyzed via the calculation formulas. Then the maximum output power density and energy conversion efficiency are calculated. The optimal thickness of the titanium tritide film is about 0.7 μm, the doping concentrations are 2.5 × 1016 cm−3, and the junction depth of PN junction is 0.1 μm. The surface recombination velocities of electron and hole are 1 × 106 cm/s, respectively. The maximum output power density and energy conversion efficiency are 0.22 μW/cm2 and 2.37%, respectively. |
doi_str_mv | 10.1063/5.0114529 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0114529</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_439bb839d708434f8fd23920e5bc86a2</doaj_id><sourcerecordid>2720625252</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-53d0734869e67e755c8156f271b109e714d51f8a435bedb8f0765b7ca6e113fc3</originalsourceid><addsrcrecordid>eNp9kMtKQzEQhg-ioNQufIMDrhROzT05SylqC4Uu1HXItaTUpiZpoa58B9_QJ_FopQqCM4sZho9_Zv6qOoNgAAHDV3QAICQUtQfVCYJUNBghdvirP676Oc9BF6SFQJCTajxdlfAUXlQJcVlbl8NsWUdfk9H769t9GDZaZWdr7YraxEVRwdRaleLStl7nsJzVeFTnuE7GnVZHXi2y63_XXvV4e_MwHDWT6d14eD1pDKaiNBRbwDERrHWMO06pEZAyjzjUELSOQ2Ip9EIRTLWzWnjAGdXcKOYgxN7gXjXe6dqo5nKVwpNKWxlVkF-DmGZSpRLMwkmCW60Fbi3vfsXEC28RbhFwVBvBFOq0zndaqxSf1y4XOe9-WXbnS8QRYIh22VEXO8qkmHNyfr8VAvlpvKTy2_iOvdyx2YTyZeoe3sT0A8qV9f_Bf5U_ADaRjwg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2720625252</pqid></control><display><type>article</type><title>Optimization design of 4H–SiC-based betavoltaic battery using 3H source</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Zhang, Xue ; Zheng, Renzhou ; Wang, Yu ; Lu, Jingbin ; Zhang, Yuehui ; Chen, Ziyi ; Liu, Yumin ; Xu, Xu</creator><creatorcontrib>Zhang, Xue ; Zheng, Renzhou ; Wang, Yu ; Lu, Jingbin ; Zhang, Yuehui ; Chen, Ziyi ; Liu, Yumin ; Xu, Xu</creatorcontrib><description>This paper describes the theoretical calculation and optimization design of the PN junction betavoltaic batteries with 4H–SiC-based energy converter and titanium tritide source. The self-absorption of radioactive isotope sources and the energy deposition distribution in the semiconductor converter are simulated using the Monte Carlo method. The relationship between doping concentrations and basic factors such as minority carrier diffusion lengths and the width of the depletion region are analyzed via the calculation formulas. Then the maximum output power density and energy conversion efficiency are calculated. The optimal thickness of the titanium tritide film is about 0.7 μm, the doping concentrations are 2.5 × 1016 cm−3, and the junction depth of PN junction is 0.1 μm. The surface recombination velocities of electron and hole are 1 × 106 cm/s, respectively. The maximum output power density and energy conversion efficiency are 0.22 μW/cm2 and 2.37%, respectively.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0114529</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Depletion ; Design optimization ; Doping ; Energy conversion efficiency ; Energy distribution ; Mathematical analysis ; Minority carriers ; Monte Carlo simulation ; P-n junctions ; Radioisotopes ; Silicon carbide ; Titanium</subject><ispartof>AIP advances, 2022-10, Vol.12 (10), p.105302-105302-9</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-53d0734869e67e755c8156f271b109e714d51f8a435bedb8f0765b7ca6e113fc3</citedby><cites>FETCH-LOGICAL-c358t-53d0734869e67e755c8156f271b109e714d51f8a435bedb8f0765b7ca6e113fc3</cites><orcidid>0000-0003-0913-7997 ; 0000-0002-4100-4177 ; 0000-0002-7518-7637</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zheng, Renzhou</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lu, Jingbin</creatorcontrib><creatorcontrib>Zhang, Yuehui</creatorcontrib><creatorcontrib>Chen, Ziyi</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><title>Optimization design of 4H–SiC-based betavoltaic battery using 3H source</title><title>AIP advances</title><description>This paper describes the theoretical calculation and optimization design of the PN junction betavoltaic batteries with 4H–SiC-based energy converter and titanium tritide source. The self-absorption of radioactive isotope sources and the energy deposition distribution in the semiconductor converter are simulated using the Monte Carlo method. The relationship between doping concentrations and basic factors such as minority carrier diffusion lengths and the width of the depletion region are analyzed via the calculation formulas. Then the maximum output power density and energy conversion efficiency are calculated. The optimal thickness of the titanium tritide film is about 0.7 μm, the doping concentrations are 2.5 × 1016 cm−3, and the junction depth of PN junction is 0.1 μm. The surface recombination velocities of electron and hole are 1 × 106 cm/s, respectively. The maximum output power density and energy conversion efficiency are 0.22 μW/cm2 and 2.37%, respectively.</description><subject>Depletion</subject><subject>Design optimization</subject><subject>Doping</subject><subject>Energy conversion efficiency</subject><subject>Energy distribution</subject><subject>Mathematical analysis</subject><subject>Minority carriers</subject><subject>Monte Carlo simulation</subject><subject>P-n junctions</subject><subject>Radioisotopes</subject><subject>Silicon carbide</subject><subject>Titanium</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kMtKQzEQhg-ioNQufIMDrhROzT05SylqC4Uu1HXItaTUpiZpoa58B9_QJ_FopQqCM4sZho9_Zv6qOoNgAAHDV3QAICQUtQfVCYJUNBghdvirP676Oc9BF6SFQJCTajxdlfAUXlQJcVlbl8NsWUdfk9H769t9GDZaZWdr7YraxEVRwdRaleLStl7nsJzVeFTnuE7GnVZHXi2y63_XXvV4e_MwHDWT6d14eD1pDKaiNBRbwDERrHWMO06pEZAyjzjUELSOQ2Ip9EIRTLWzWnjAGdXcKOYgxN7gXjXe6dqo5nKVwpNKWxlVkF-DmGZSpRLMwkmCW60Fbi3vfsXEC28RbhFwVBvBFOq0zndaqxSf1y4XOe9-WXbnS8QRYIh22VEXO8qkmHNyfr8VAvlpvKTy2_iOvdyx2YTyZeoe3sT0A8qV9f_Bf5U_ADaRjwg</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Zhang, Xue</creator><creator>Zheng, Renzhou</creator><creator>Wang, Yu</creator><creator>Lu, Jingbin</creator><creator>Zhang, Yuehui</creator><creator>Chen, Ziyi</creator><creator>Liu, Yumin</creator><creator>Xu, Xu</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0913-7997</orcidid><orcidid>https://orcid.org/0000-0002-4100-4177</orcidid><orcidid>https://orcid.org/0000-0002-7518-7637</orcidid></search><sort><creationdate>20221001</creationdate><title>Optimization design of 4H–SiC-based betavoltaic battery using 3H source</title><author>Zhang, Xue ; Zheng, Renzhou ; Wang, Yu ; Lu, Jingbin ; Zhang, Yuehui ; Chen, Ziyi ; Liu, Yumin ; Xu, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-53d0734869e67e755c8156f271b109e714d51f8a435bedb8f0765b7ca6e113fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Depletion</topic><topic>Design optimization</topic><topic>Doping</topic><topic>Energy conversion efficiency</topic><topic>Energy distribution</topic><topic>Mathematical analysis</topic><topic>Minority carriers</topic><topic>Monte Carlo simulation</topic><topic>P-n junctions</topic><topic>Radioisotopes</topic><topic>Silicon carbide</topic><topic>Titanium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Xue</creatorcontrib><creatorcontrib>Zheng, Renzhou</creatorcontrib><creatorcontrib>Wang, Yu</creatorcontrib><creatorcontrib>Lu, Jingbin</creatorcontrib><creatorcontrib>Zhang, Yuehui</creatorcontrib><creatorcontrib>Chen, Ziyi</creatorcontrib><creatorcontrib>Liu, Yumin</creatorcontrib><creatorcontrib>Xu, Xu</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Xue</au><au>Zheng, Renzhou</au><au>Wang, Yu</au><au>Lu, Jingbin</au><au>Zhang, Yuehui</au><au>Chen, Ziyi</au><au>Liu, Yumin</au><au>Xu, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization design of 4H–SiC-based betavoltaic battery using 3H source</atitle><jtitle>AIP advances</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>105302</spage><epage>105302-9</epage><pages>105302-105302-9</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>This paper describes the theoretical calculation and optimization design of the PN junction betavoltaic batteries with 4H–SiC-based energy converter and titanium tritide source. The self-absorption of radioactive isotope sources and the energy deposition distribution in the semiconductor converter are simulated using the Monte Carlo method. The relationship between doping concentrations and basic factors such as minority carrier diffusion lengths and the width of the depletion region are analyzed via the calculation formulas. Then the maximum output power density and energy conversion efficiency are calculated. The optimal thickness of the titanium tritide film is about 0.7 μm, the doping concentrations are 2.5 × 1016 cm−3, and the junction depth of PN junction is 0.1 μm. The surface recombination velocities of electron and hole are 1 × 106 cm/s, respectively. The maximum output power density and energy conversion efficiency are 0.22 μW/cm2 and 2.37%, respectively.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0114529</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-0913-7997</orcidid><orcidid>https://orcid.org/0000-0002-4100-4177</orcidid><orcidid>https://orcid.org/0000-0002-7518-7637</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2022-10, Vol.12 (10), p.105302-105302-9 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0114529 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Depletion Design optimization Doping Energy conversion efficiency Energy distribution Mathematical analysis Minority carriers Monte Carlo simulation P-n junctions Radioisotopes Silicon carbide Titanium |
title | Optimization design of 4H–SiC-based betavoltaic battery using 3H source |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A03%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20design%20of%204H%E2%80%93SiC-based%20betavoltaic%20battery%20using%203H%20source&rft.jtitle=AIP%20advances&rft.au=Zhang,%20Xue&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=105302&rft.epage=105302-9&rft.pages=105302-105302-9&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0114529&rft_dat=%3Cproquest_cross%3E2720625252%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2720625252&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_439bb839d708434f8fd23920e5bc86a2&rfr_iscdi=true |