Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface

Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-09, Vol.121 (11)
Hauptverfasser: Li, Kaikai, Xie, Yingxi, Tang, Biao, Yu, Min, Ding, Huanwen, Li, Chunbao, Lu, Longsheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Applied physics letters
container_volume 121
creator Li, Kaikai
Xie, Yingxi
Tang, Biao
Yu, Min
Ding, Huanwen
Li, Chunbao
Lu, Longsheng
description Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.
doi_str_mv 10.1063/5.0112783
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0112783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713833875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWTNLd7B6ltCoUvOg5br7olm2z5qPQf2-WFrx7GmZ45p3hQegeyAxIxZ7LGQGgvGYXaAKE84IB1JdoQghhRdWUcI1uQtjmtqSMTdD38uD6FDu3x85i0xsVvSu6vU7KaCx75zQe-jbsWqy9G3oTA85si0MajN8cx-HGyU7hXae8C9EnFZPPuyF52ypzi65s2wdzd65T9LVafi7eivXH6_viZV0oRnksgFjaAKs5ndOKc6pASq6pbUgNfN40hFLCNMxZLaFsaloaLSVVlZKqssAkm6KHU-7g3U8yIYqtS36fTwrKczDL2WWmHk_U-GvwxorBd7vWHwUQMQoUpTgLzOzTiQ2qi-2o6H_wwfk_UAzasl_XyH7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713833875</pqid></control><display><type>article</type><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</creator><creatorcontrib>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</creatorcontrib><description>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0112783</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adhesion ; Alternating current ; Applied physics ; Blood plasma ; Bubbles ; Direct current ; Droplets ; Electric fields ; Electrolysis ; Evolution ; Flat surfaces ; Hemostatics ; Hydrophobic surfaces ; Hydrophobicity ; Microstructured surfaces ; Papillae ; Plasma ; Proteins</subject><ispartof>Applied physics letters, 2022-09, Vol.121 (11)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</citedby><cites>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</cites><orcidid>0000-0002-7961-3883 ; 0000-0002-5838-7485 ; 0000-0003-2909-3004 ; 0000-0003-1875-740X ; 0000-0003-1505-9438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0112783$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Li, Kaikai</creatorcontrib><creatorcontrib>Xie, Yingxi</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Ding, Huanwen</creatorcontrib><creatorcontrib>Li, Chunbao</creatorcontrib><creatorcontrib>Lu, Longsheng</creatorcontrib><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><title>Applied physics letters</title><description>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</description><subject>Adhesion</subject><subject>Alternating current</subject><subject>Applied physics</subject><subject>Blood plasma</subject><subject>Bubbles</subject><subject>Direct current</subject><subject>Droplets</subject><subject>Electric fields</subject><subject>Electrolysis</subject><subject>Evolution</subject><subject>Flat surfaces</subject><subject>Hemostatics</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Microstructured surfaces</subject><subject>Papillae</subject><subject>Plasma</subject><subject>Proteins</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWTNLd7B6ltCoUvOg5br7olm2z5qPQf2-WFrx7GmZ45p3hQegeyAxIxZ7LGQGgvGYXaAKE84IB1JdoQghhRdWUcI1uQtjmtqSMTdD38uD6FDu3x85i0xsVvSu6vU7KaCx75zQe-jbsWqy9G3oTA85si0MajN8cx-HGyU7hXae8C9EnFZPPuyF52ypzi65s2wdzd65T9LVafi7eivXH6_viZV0oRnksgFjaAKs5ndOKc6pASq6pbUgNfN40hFLCNMxZLaFsaloaLSVVlZKqssAkm6KHU-7g3U8yIYqtS36fTwrKczDL2WWmHk_U-GvwxorBd7vWHwUQMQoUpTgLzOzTiQ2qi-2o6H_wwfk_UAzasl_XyH7s</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Li, Kaikai</creator><creator>Xie, Yingxi</creator><creator>Tang, Biao</creator><creator>Yu, Min</creator><creator>Ding, Huanwen</creator><creator>Li, Chunbao</creator><creator>Lu, Longsheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7961-3883</orcidid><orcidid>https://orcid.org/0000-0002-5838-7485</orcidid><orcidid>https://orcid.org/0000-0003-2909-3004</orcidid><orcidid>https://orcid.org/0000-0003-1875-740X</orcidid><orcidid>https://orcid.org/0000-0003-1505-9438</orcidid></search><sort><creationdate>20220912</creationdate><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><author>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesion</topic><topic>Alternating current</topic><topic>Applied physics</topic><topic>Blood plasma</topic><topic>Bubbles</topic><topic>Direct current</topic><topic>Droplets</topic><topic>Electric fields</topic><topic>Electrolysis</topic><topic>Evolution</topic><topic>Flat surfaces</topic><topic>Hemostatics</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Microstructured surfaces</topic><topic>Papillae</topic><topic>Plasma</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kaikai</creatorcontrib><creatorcontrib>Xie, Yingxi</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Ding, Huanwen</creatorcontrib><creatorcontrib>Li, Chunbao</creatorcontrib><creatorcontrib>Lu, Longsheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kaikai</au><au>Xie, Yingxi</au><au>Tang, Biao</au><au>Yu, Min</au><au>Ding, Huanwen</au><au>Li, Chunbao</au><au>Lu, Longsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</atitle><jtitle>Applied physics letters</jtitle><date>2022-09-12</date><risdate>2022</risdate><volume>121</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0112783</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7961-3883</orcidid><orcidid>https://orcid.org/0000-0002-5838-7485</orcidid><orcidid>https://orcid.org/0000-0003-2909-3004</orcidid><orcidid>https://orcid.org/0000-0003-1875-740X</orcidid><orcidid>https://orcid.org/0000-0003-1505-9438</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-09, Vol.121 (11)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0112783
source AIP Journals Complete; Alma/SFX Local Collection
subjects Adhesion
Alternating current
Applied physics
Blood plasma
Bubbles
Direct current
Droplets
Electric fields
Electrolysis
Evolution
Flat surfaces
Hemostatics
Hydrophobic surfaces
Hydrophobicity
Microstructured surfaces
Papillae
Plasma
Proteins
title Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20electro-induced%20blood%20plasma%20droplets%20on%20a%20superhydrophobic%20microstructured%20surface&rft.jtitle=Applied%20physics%20letters&rft.au=Li,%20Kaikai&rft.date=2022-09-12&rft.volume=121&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0112783&rft_dat=%3Cproquest_cross%3E2713833875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713833875&rft_id=info:pmid/&rfr_iscdi=true