Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface
Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms rel...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-09, Vol.121 (11) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 121 |
creator | Li, Kaikai Xie, Yingxi Tang, Biao Yu, Min Ding, Huanwen Li, Chunbao Lu, Longsheng |
description | Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level. |
doi_str_mv | 10.1063/5.0112783 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0112783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2713833875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</originalsourceid><addsrcrecordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWTNLd7B6ltCoUvOg5br7olm2z5qPQf2-WFrx7GmZ45p3hQegeyAxIxZ7LGQGgvGYXaAKE84IB1JdoQghhRdWUcI1uQtjmtqSMTdD38uD6FDu3x85i0xsVvSu6vU7KaCx75zQe-jbsWqy9G3oTA85si0MajN8cx-HGyU7hXae8C9EnFZPPuyF52ypzi65s2wdzd65T9LVafi7eivXH6_viZV0oRnksgFjaAKs5ndOKc6pASq6pbUgNfN40hFLCNMxZLaFsaloaLSVVlZKqssAkm6KHU-7g3U8yIYqtS36fTwrKczDL2WWmHk_U-GvwxorBd7vWHwUQMQoUpTgLzOzTiQ2qi-2o6H_wwfk_UAzasl_XyH7s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2713833875</pqid></control><display><type>article</type><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</creator><creatorcontrib>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</creatorcontrib><description>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0112783</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Adhesion ; Alternating current ; Applied physics ; Blood plasma ; Bubbles ; Direct current ; Droplets ; Electric fields ; Electrolysis ; Evolution ; Flat surfaces ; Hemostatics ; Hydrophobic surfaces ; Hydrophobicity ; Microstructured surfaces ; Papillae ; Plasma ; Proteins</subject><ispartof>Applied physics letters, 2022-09, Vol.121 (11)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</citedby><cites>FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</cites><orcidid>0000-0002-7961-3883 ; 0000-0002-5838-7485 ; 0000-0003-2909-3004 ; 0000-0003-1875-740X ; 0000-0003-1505-9438</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0112783$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Li, Kaikai</creatorcontrib><creatorcontrib>Xie, Yingxi</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Ding, Huanwen</creatorcontrib><creatorcontrib>Li, Chunbao</creatorcontrib><creatorcontrib>Lu, Longsheng</creatorcontrib><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><title>Applied physics letters</title><description>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</description><subject>Adhesion</subject><subject>Alternating current</subject><subject>Applied physics</subject><subject>Blood plasma</subject><subject>Bubbles</subject><subject>Direct current</subject><subject>Droplets</subject><subject>Electric fields</subject><subject>Electrolysis</subject><subject>Evolution</subject><subject>Flat surfaces</subject><subject>Hemostatics</subject><subject>Hydrophobic surfaces</subject><subject>Hydrophobicity</subject><subject>Microstructured surfaces</subject><subject>Papillae</subject><subject>Plasma</subject><subject>Proteins</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQhoMoWKsH_0HAk8LWTNLd7B6ltCoUvOg5br7olm2z5qPQf2-WFrx7GmZ45p3hQegeyAxIxZ7LGQGgvGYXaAKE84IB1JdoQghhRdWUcI1uQtjmtqSMTdD38uD6FDu3x85i0xsVvSu6vU7KaCx75zQe-jbsWqy9G3oTA85si0MajN8cx-HGyU7hXae8C9EnFZPPuyF52ypzi65s2wdzd65T9LVafi7eivXH6_viZV0oRnksgFjaAKs5ndOKc6pASq6pbUgNfN40hFLCNMxZLaFsaloaLSVVlZKqssAkm6KHU-7g3U8yIYqtS36fTwrKczDL2WWmHk_U-GvwxorBd7vWHwUQMQoUpTgLzOzTiQ2qi-2o6H_wwfk_UAzasl_XyH7s</recordid><startdate>20220912</startdate><enddate>20220912</enddate><creator>Li, Kaikai</creator><creator>Xie, Yingxi</creator><creator>Tang, Biao</creator><creator>Yu, Min</creator><creator>Ding, Huanwen</creator><creator>Li, Chunbao</creator><creator>Lu, Longsheng</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7961-3883</orcidid><orcidid>https://orcid.org/0000-0002-5838-7485</orcidid><orcidid>https://orcid.org/0000-0003-2909-3004</orcidid><orcidid>https://orcid.org/0000-0003-1875-740X</orcidid><orcidid>https://orcid.org/0000-0003-1505-9438</orcidid></search><sort><creationdate>20220912</creationdate><title>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</title><author>Li, Kaikai ; Xie, Yingxi ; Tang, Biao ; Yu, Min ; Ding, Huanwen ; Li, Chunbao ; Lu, Longsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-10f2913872426772c1bb7d2f9081749902203d1438b159825edbb2c6cbc6f13b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adhesion</topic><topic>Alternating current</topic><topic>Applied physics</topic><topic>Blood plasma</topic><topic>Bubbles</topic><topic>Direct current</topic><topic>Droplets</topic><topic>Electric fields</topic><topic>Electrolysis</topic><topic>Evolution</topic><topic>Flat surfaces</topic><topic>Hemostatics</topic><topic>Hydrophobic surfaces</topic><topic>Hydrophobicity</topic><topic>Microstructured surfaces</topic><topic>Papillae</topic><topic>Plasma</topic><topic>Proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Kaikai</creatorcontrib><creatorcontrib>Xie, Yingxi</creatorcontrib><creatorcontrib>Tang, Biao</creatorcontrib><creatorcontrib>Yu, Min</creatorcontrib><creatorcontrib>Ding, Huanwen</creatorcontrib><creatorcontrib>Li, Chunbao</creatorcontrib><creatorcontrib>Lu, Longsheng</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Kaikai</au><au>Xie, Yingxi</au><au>Tang, Biao</au><au>Yu, Min</au><au>Ding, Huanwen</au><au>Li, Chunbao</au><au>Lu, Longsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface</atitle><jtitle>Applied physics letters</jtitle><date>2022-09-12</date><risdate>2022</risdate><volume>121</volume><issue>11</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Formation of severe adhesion on electrosurgical devices during their interaction with biofluids is an inherent problem that often causes reduced cutting efficiency and failed hemostasis. The introduction of (super-) hydrophobic surfaces is a favorable option for anti-adhesion, but the mechanisms related to their evolution with biofluids under electric fields are still not fully understood. Here, we investigated the evolution of blood plasma droplets on a superhydrophobic microstructured (SHM) surface under direct-current (DC) and alternating-current (AC) electric fields. The electrolysis of plasma droplets leads to the formation and diffusion of bubbles accompanied by a rise in temperature, while in turn, the electrolysis is suppressed as the bubbles fill the droplets, followed by a decrease in temperature. We show that under the DC electric field, the bubbles produced by papillae on the SHM surface can effectively prevent directional adsorption of plasma proteins compared to the flat surface, whereas the AC electric field induces oscillations in plasma proteins, resulting in even less adhesion. These findings provide valuable basic information for understanding the anti-adhesion mechanism of electrosurgical devices at a microscopic level.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0112783</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7961-3883</orcidid><orcidid>https://orcid.org/0000-0002-5838-7485</orcidid><orcidid>https://orcid.org/0000-0003-2909-3004</orcidid><orcidid>https://orcid.org/0000-0003-1875-740X</orcidid><orcidid>https://orcid.org/0000-0003-1505-9438</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-09, Vol.121 (11) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0112783 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Adhesion Alternating current Applied physics Blood plasma Bubbles Direct current Droplets Electric fields Electrolysis Evolution Flat surfaces Hemostatics Hydrophobic surfaces Hydrophobicity Microstructured surfaces Papillae Plasma Proteins |
title | Evolution of electro-induced blood plasma droplets on a superhydrophobic microstructured surface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T14%3A48%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evolution%20of%20electro-induced%20blood%20plasma%20droplets%20on%20a%20superhydrophobic%20microstructured%20surface&rft.jtitle=Applied%20physics%20letters&rft.au=Li,%20Kaikai&rft.date=2022-09-12&rft.volume=121&rft.issue=11&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0112783&rft_dat=%3Cproquest_cross%3E2713833875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2713833875&rft_id=info:pmid/&rfr_iscdi=true |