Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency

Inorganic CdTe and FeSi2-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi2 as a secondary absorber la...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2022-10, Vol.12 (10), p.105317-105317-11
Hauptverfasser: Rahman, Md. Ferdous, Habib, M. J. A., Ali, Md. Hasan, Rubel, M. H. K., Islam, Md. Rounakul, Md. Ismail, Abu Bakar, Hossain, M. Khalid
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 105317-11
container_issue 10
container_start_page 105317
container_title AIP advances
container_volume 12
creator Rahman, Md. Ferdous
Habib, M. J. A.
Ali, Md. Hasan
Rubel, M. H. K.
Islam, Md. Rounakul
Md. Ismail, Abu Bakar
Hossain, M. Khalid
description Inorganic CdTe and FeSi2-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi2 as a secondary absorber layer and In2S3 as the window layer for improving photovoltaic performance parameters. Simulating on SCAPS-1D, the proposed double-absorber (Cu/FTO/In2S3/CdTe/FeSi2/Ni) structure is thoroughly examined and analyzed. The window layer thickness, absorber layer thickness, acceptor density (NA), donor density (ND), defect density (Nt), series resistance (RS), and shunt resistance (Rsh) were simulated in detail for optimization of the above configuration to improve the PV performance. According to this study, 0.5 µm is the optimized thickness for both the CdTe and FeSi2 absorber layers in order to maximize the efficiency (η). Here, the value of the optimum window layer thickness is 50 nm. For using CdTe as a single absorber, η is achieved by 13.26%. However, for using CdTe and FeSi2 as a dual absorber, η is enhanced and the obtaining value is 27.35%. The other parameters are also improved and the resultant value for the fill factor is 83.68%, the open-circuit voltage (Voc) is 0.6566 V, and the short circuit current density (Jsc) is 49.78 mA/cm2. Furthermore, the proposed model performs well at 300 K operating temperature. The addition of the FeSi2 layer to the cell structure has resulted in a significant quantum efficiency enhancement because of the rise in solar spectrum absorption at longer wavelengths (λ). The findings of this work offer a promising approach for producing high-performance and reasonably priced CdTe-based solar cells.
doi_str_mv 10.1063/5.0108459
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0108459</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_d0ea483a97ca4b2391eefd1e0f1092a9</doaj_id><sourcerecordid>2729233179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-f9e22ac839433c634d93c9d3472116aa4031de66b278415fe5d1b07cfd7bdffd3</originalsourceid><addsrcrecordid>eNp9kU1LXDEUhi_FQkVd9B8E3DjC2HzdjyxlrFUQuqhdh3OTkzHDnWRM7lX8Of2nzcyIFoRmk3DOk-cNOVX1ldELRhvxrb6gjHayVp-qQ87qbi44bw7-OX-pTnJe0bKk2pKH1Z8rzH4ZCARLwrTG5A0MxIcnzKNfwuhjINERA3btpzUZcRim5C2Ss4W9x9nunk8Fyn7wZte4xl-ez0gPGS2xceoHJNDnmHpMJMcBEjFFk8kYCYYHCAbJJj6XpoklN-VtJjpXdBjMy3H12cGQ8eR1P6p-X3-_X9zM737-uF1c3s2N5N04dwo5B9MJJYUwjZBWCaOskC1nrAGQVDCLTdPztpOsdlhb1tPWONv21jkrjqrbvddGWOlN8mtILzqC17tCTEsNafRmQG0pguwEqNaA7LlQDNFZhtQxqjio4jrduzYpPk7lK_UqTimU52vecsWFYO2Wmu0pk2LOCd1bKqN6O1Bd69eBFvZ8z2bjx91Y3uCnmN5BvbHuf_BH819yALAk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729233179</pqid></control><display><type>article</type><title>Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Rahman, Md. Ferdous ; Habib, M. J. A. ; Ali, Md. Hasan ; Rubel, M. H. K. ; Islam, Md. Rounakul ; Md. Ismail, Abu Bakar ; Hossain, M. Khalid</creator><creatorcontrib>Rahman, Md. Ferdous ; Habib, M. J. A. ; Ali, Md. Hasan ; Rubel, M. H. K. ; Islam, Md. Rounakul ; Md. Ismail, Abu Bakar ; Hossain, M. Khalid</creatorcontrib><description>Inorganic CdTe and FeSi2-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi2 as a secondary absorber layer and In2S3 as the window layer for improving photovoltaic performance parameters. Simulating on SCAPS-1D, the proposed double-absorber (Cu/FTO/In2S3/CdTe/FeSi2/Ni) structure is thoroughly examined and analyzed. The window layer thickness, absorber layer thickness, acceptor density (NA), donor density (ND), defect density (Nt), series resistance (RS), and shunt resistance (Rsh) were simulated in detail for optimization of the above configuration to improve the PV performance. According to this study, 0.5 µm is the optimized thickness for both the CdTe and FeSi2 absorber layers in order to maximize the efficiency (η). Here, the value of the optimum window layer thickness is 50 nm. For using CdTe as a single absorber, η is achieved by 13.26%. However, for using CdTe and FeSi2 as a dual absorber, η is enhanced and the obtaining value is 27.35%. The other parameters are also improved and the resultant value for the fill factor is 83.68%, the open-circuit voltage (Voc) is 0.6566 V, and the short circuit current density (Jsc) is 49.78 mA/cm2. Furthermore, the proposed model performs well at 300 K operating temperature. The addition of the FeSi2 layer to the cell structure has resulted in a significant quantum efficiency enhancement because of the rise in solar spectrum absorption at longer wavelengths (λ). The findings of this work offer a promising approach for producing high-performance and reasonably priced CdTe-based solar cells.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0108459</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Absorbers ; Cadmium telluride ; Cadmium tellurides ; Circuits ; Disilicides ; Efficiency ; Energy conversion efficiency ; Intermetallic compounds ; Iron silicide ; Open circuit voltage ; Operating temperature ; Optimization ; Optoelectronics ; Parameters ; Photovoltaic cells ; Quantum efficiency ; Short circuit currents ; Shunt resistance ; Solar cells ; Thermal stability ; Thickness</subject><ispartof>AIP advances, 2022-10, Vol.12 (10), p.105317-105317-11</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-f9e22ac839433c634d93c9d3472116aa4031de66b278415fe5d1b07cfd7bdffd3</citedby><cites>FETCH-LOGICAL-c428t-f9e22ac839433c634d93c9d3472116aa4031de66b278415fe5d1b07cfd7bdffd3</cites><orcidid>0000-0002-3708-6958 ; 0000-0003-4595-6367 ; 0000-0001-6856-5663</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Rahman, Md. Ferdous</creatorcontrib><creatorcontrib>Habib, M. J. A.</creatorcontrib><creatorcontrib>Ali, Md. Hasan</creatorcontrib><creatorcontrib>Rubel, M. H. K.</creatorcontrib><creatorcontrib>Islam, Md. Rounakul</creatorcontrib><creatorcontrib>Md. Ismail, Abu Bakar</creatorcontrib><creatorcontrib>Hossain, M. Khalid</creatorcontrib><title>Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency</title><title>AIP advances</title><description>Inorganic CdTe and FeSi2-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi2 as a secondary absorber layer and In2S3 as the window layer for improving photovoltaic performance parameters. Simulating on SCAPS-1D, the proposed double-absorber (Cu/FTO/In2S3/CdTe/FeSi2/Ni) structure is thoroughly examined and analyzed. The window layer thickness, absorber layer thickness, acceptor density (NA), donor density (ND), defect density (Nt), series resistance (RS), and shunt resistance (Rsh) were simulated in detail for optimization of the above configuration to improve the PV performance. According to this study, 0.5 µm is the optimized thickness for both the CdTe and FeSi2 absorber layers in order to maximize the efficiency (η). Here, the value of the optimum window layer thickness is 50 nm. For using CdTe as a single absorber, η is achieved by 13.26%. However, for using CdTe and FeSi2 as a dual absorber, η is enhanced and the obtaining value is 27.35%. The other parameters are also improved and the resultant value for the fill factor is 83.68%, the open-circuit voltage (Voc) is 0.6566 V, and the short circuit current density (Jsc) is 49.78 mA/cm2. Furthermore, the proposed model performs well at 300 K operating temperature. The addition of the FeSi2 layer to the cell structure has resulted in a significant quantum efficiency enhancement because of the rise in solar spectrum absorption at longer wavelengths (λ). The findings of this work offer a promising approach for producing high-performance and reasonably priced CdTe-based solar cells.</description><subject>Absorbers</subject><subject>Cadmium telluride</subject><subject>Cadmium tellurides</subject><subject>Circuits</subject><subject>Disilicides</subject><subject>Efficiency</subject><subject>Energy conversion efficiency</subject><subject>Intermetallic compounds</subject><subject>Iron silicide</subject><subject>Open circuit voltage</subject><subject>Operating temperature</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Parameters</subject><subject>Photovoltaic cells</subject><subject>Quantum efficiency</subject><subject>Short circuit currents</subject><subject>Shunt resistance</subject><subject>Solar cells</subject><subject>Thermal stability</subject><subject>Thickness</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kU1LXDEUhi_FQkVd9B8E3DjC2HzdjyxlrFUQuqhdh3OTkzHDnWRM7lX8Of2nzcyIFoRmk3DOk-cNOVX1ldELRhvxrb6gjHayVp-qQ87qbi44bw7-OX-pTnJe0bKk2pKH1Z8rzH4ZCARLwrTG5A0MxIcnzKNfwuhjINERA3btpzUZcRim5C2Ss4W9x9nunk8Fyn7wZte4xl-ez0gPGS2xceoHJNDnmHpMJMcBEjFFk8kYCYYHCAbJJj6XpoklN-VtJjpXdBjMy3H12cGQ8eR1P6p-X3-_X9zM737-uF1c3s2N5N04dwo5B9MJJYUwjZBWCaOskC1nrAGQVDCLTdPztpOsdlhb1tPWONv21jkrjqrbvddGWOlN8mtILzqC17tCTEsNafRmQG0pguwEqNaA7LlQDNFZhtQxqjio4jrduzYpPk7lK_UqTimU52vecsWFYO2Wmu0pk2LOCd1bKqN6O1Bd69eBFvZ8z2bjx91Y3uCnmN5BvbHuf_BH819yALAk</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Rahman, Md. Ferdous</creator><creator>Habib, M. J. A.</creator><creator>Ali, Md. Hasan</creator><creator>Rubel, M. H. K.</creator><creator>Islam, Md. Rounakul</creator><creator>Md. Ismail, Abu Bakar</creator><creator>Hossain, M. Khalid</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3708-6958</orcidid><orcidid>https://orcid.org/0000-0003-4595-6367</orcidid><orcidid>https://orcid.org/0000-0001-6856-5663</orcidid></search><sort><creationdate>20221001</creationdate><title>Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency</title><author>Rahman, Md. Ferdous ; Habib, M. J. A. ; Ali, Md. Hasan ; Rubel, M. H. K. ; Islam, Md. Rounakul ; Md. Ismail, Abu Bakar ; Hossain, M. Khalid</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-f9e22ac839433c634d93c9d3472116aa4031de66b278415fe5d1b07cfd7bdffd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Absorbers</topic><topic>Cadmium telluride</topic><topic>Cadmium tellurides</topic><topic>Circuits</topic><topic>Disilicides</topic><topic>Efficiency</topic><topic>Energy conversion efficiency</topic><topic>Intermetallic compounds</topic><topic>Iron silicide</topic><topic>Open circuit voltage</topic><topic>Operating temperature</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Parameters</topic><topic>Photovoltaic cells</topic><topic>Quantum efficiency</topic><topic>Short circuit currents</topic><topic>Shunt resistance</topic><topic>Solar cells</topic><topic>Thermal stability</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rahman, Md. Ferdous</creatorcontrib><creatorcontrib>Habib, M. J. A.</creatorcontrib><creatorcontrib>Ali, Md. Hasan</creatorcontrib><creatorcontrib>Rubel, M. H. K.</creatorcontrib><creatorcontrib>Islam, Md. Rounakul</creatorcontrib><creatorcontrib>Md. Ismail, Abu Bakar</creatorcontrib><creatorcontrib>Hossain, M. Khalid</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rahman, Md. Ferdous</au><au>Habib, M. J. A.</au><au>Ali, Md. Hasan</au><au>Rubel, M. H. K.</au><au>Islam, Md. Rounakul</au><au>Md. Ismail, Abu Bakar</au><au>Hossain, M. Khalid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency</atitle><jtitle>AIP advances</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>12</volume><issue>10</issue><spage>105317</spage><epage>105317-11</epage><pages>105317-105317-11</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Inorganic CdTe and FeSi2-based solar cells have recently drawn a lot of attention because they offer superior thermal stability and good optoelectronic properties compared to conventional solar cells. In this work, a unique alternative technique is presented by using FeSi2 as a secondary absorber layer and In2S3 as the window layer for improving photovoltaic performance parameters. Simulating on SCAPS-1D, the proposed double-absorber (Cu/FTO/In2S3/CdTe/FeSi2/Ni) structure is thoroughly examined and analyzed. The window layer thickness, absorber layer thickness, acceptor density (NA), donor density (ND), defect density (Nt), series resistance (RS), and shunt resistance (Rsh) were simulated in detail for optimization of the above configuration to improve the PV performance. According to this study, 0.5 µm is the optimized thickness for both the CdTe and FeSi2 absorber layers in order to maximize the efficiency (η). Here, the value of the optimum window layer thickness is 50 nm. For using CdTe as a single absorber, η is achieved by 13.26%. However, for using CdTe and FeSi2 as a dual absorber, η is enhanced and the obtaining value is 27.35%. The other parameters are also improved and the resultant value for the fill factor is 83.68%, the open-circuit voltage (Voc) is 0.6566 V, and the short circuit current density (Jsc) is 49.78 mA/cm2. Furthermore, the proposed model performs well at 300 K operating temperature. The addition of the FeSi2 layer to the cell structure has resulted in a significant quantum efficiency enhancement because of the rise in solar spectrum absorption at longer wavelengths (λ). The findings of this work offer a promising approach for producing high-performance and reasonably priced CdTe-based solar cells.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0108459</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3708-6958</orcidid><orcidid>https://orcid.org/0000-0003-4595-6367</orcidid><orcidid>https://orcid.org/0000-0001-6856-5663</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2022-10, Vol.12 (10), p.105317-105317-11
issn 2158-3226
2158-3226
language eng
recordid cdi_crossref_primary_10_1063_5_0108459
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Absorbers
Cadmium telluride
Cadmium tellurides
Circuits
Disilicides
Efficiency
Energy conversion efficiency
Intermetallic compounds
Iron silicide
Open circuit voltage
Operating temperature
Optimization
Optoelectronics
Parameters
Photovoltaic cells
Quantum efficiency
Short circuit currents
Shunt resistance
Solar cells
Thermal stability
Thickness
title Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20and%20numerical%20investigation%20of%20cadmium%20telluride%20(CdTe)%20and%20iron%20silicide%20(FeSi2)%20based%20double%20absorber%20solar%20cells%20to%20enhance%20power%20conversion%20efficiency&rft.jtitle=AIP%20advances&rft.au=Rahman,%20Md.%20Ferdous&rft.date=2022-10-01&rft.volume=12&rft.issue=10&rft.spage=105317&rft.epage=105317-11&rft.pages=105317-105317-11&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0108459&rft_dat=%3Cproquest_cross%3E2729233179%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729233179&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_d0ea483a97ca4b2391eefd1e0f1092a9&rfr_iscdi=true