Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains
We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduce...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2023-10, Vol.64 (10) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 64 |
creator | Cavalcanti, Marcelo M. Corrêa, Wellington J. Domingos Cavalcanti, Valéria Neves |
description | We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis. |
doi_str_mv | 10.1063/5.0101506 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0101506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871424759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFq7pNZSqkXKLhQ1yHNxaa0M9MkA-2L-QK-mNF27eocON85h-8H4BqjCUaC3vMJwghzJE7ACCPZVLXg8hSMECKkIkzKc3CR0gohjCVjI6Bmu75rXZuDXkPrjN5Dl3LY6OwS9F2Eeemg1Zve2TL2nRlSaD_hm1nG7y9bWheh2w46h66FoYVul10MZc92Gx3adAnOvF4nd3WsY_DxOHufPlfz16eX6cO8MoSTXFlZS-T1gmJqiCAUEccJZr4xxmunqRfeGCOoaAwX1mG0YIyK2jSW0AWWko7BzeFuH7vtUBTUqhtiW14qImvMCKt5U6jbA2Vil1J0XvWxuMa9wkj95qe4OuZX2LsDm0zIf37_wD-GiHEq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871424759</pqid></control><display><type>article</type><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</creator><creatorcontrib>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</creatorcontrib><description>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0101506</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Defocusing ; Differential equations ; Operators (mathematics) ; Physics ; Schrodinger equation ; Smooth boundaries ; Stability ; Uniqueness theorems ; Wave equations</subject><ispartof>Journal of mathematical physics, 2023-10, Vol.64 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</cites><orcidid>0000-0001-5493-5918 ; 0000-0001-5638-3272 ; 0000-0002-1047-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0101506$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Cavalcanti, Marcelo M.</creatorcontrib><creatorcontrib>Corrêa, Wellington J.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, Valéria Neves</creatorcontrib><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><title>Journal of mathematical physics</title><description>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</description><subject>Boundary conditions</subject><subject>Defocusing</subject><subject>Differential equations</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Schrodinger equation</subject><subject>Smooth boundaries</subject><subject>Stability</subject><subject>Uniqueness theorems</subject><subject>Wave equations</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFq7pNZSqkXKLhQ1yHNxaa0M9MkA-2L-QK-mNF27eocON85h-8H4BqjCUaC3vMJwghzJE7ACCPZVLXg8hSMECKkIkzKc3CR0gohjCVjI6Bmu75rXZuDXkPrjN5Dl3LY6OwS9F2Eeemg1Zve2TL2nRlSaD_hm1nG7y9bWheh2w46h66FoYVul10MZc92Gx3adAnOvF4nd3WsY_DxOHufPlfz16eX6cO8MoSTXFlZS-T1gmJqiCAUEccJZr4xxmunqRfeGCOoaAwX1mG0YIyK2jSW0AWWko7BzeFuH7vtUBTUqhtiW14qImvMCKt5U6jbA2Vil1J0XvWxuMa9wkj95qe4OuZX2LsDm0zIf37_wD-GiHEq</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cavalcanti, Marcelo M.</creator><creator>Corrêa, Wellington J.</creator><creator>Domingos Cavalcanti, Valéria Neves</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5493-5918</orcidid><orcidid>https://orcid.org/0000-0001-5638-3272</orcidid><orcidid>https://orcid.org/0000-0002-1047-3763</orcidid></search><sort><creationdate>20231001</creationdate><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><author>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Defocusing</topic><topic>Differential equations</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Schrodinger equation</topic><topic>Smooth boundaries</topic><topic>Stability</topic><topic>Uniqueness theorems</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalcanti, Marcelo M.</creatorcontrib><creatorcontrib>Corrêa, Wellington J.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, Valéria Neves</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalcanti, Marcelo M.</au><au>Corrêa, Wellington J.</au><au>Domingos Cavalcanti, Valéria Neves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>64</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0101506</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5493-5918</orcidid><orcidid>https://orcid.org/0000-0001-5638-3272</orcidid><orcidid>https://orcid.org/0000-0002-1047-3763</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2023-10, Vol.64 (10) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0101506 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Boundary conditions Defocusing Differential equations Operators (mathematics) Physics Schrodinger equation Smooth boundaries Stability Uniqueness theorems Wave equations |
title | Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20decay%20estimates%20for%20the%20damped%20defocusing%20Schr%C3%B6dinger%20equation%20in%20exterior%20domains&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cavalcanti,%20Marcelo%20M.&rft.date=2023-10-01&rft.volume=64&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0101506&rft_dat=%3Cproquest_cross%3E2871424759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871424759&rft_id=info:pmid/&rfr_iscdi=true |