Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains

We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduce...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-10, Vol.64 (10)
Hauptverfasser: Cavalcanti, Marcelo M., Corrêa, Wellington J., Domingos Cavalcanti, Valéria Neves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator Cavalcanti, Marcelo M.
Corrêa, Wellington J.
Domingos Cavalcanti, Valéria Neves
description We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.
doi_str_mv 10.1063/5.0101506
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0101506</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2871424759</sourcerecordid><originalsourceid>FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</originalsourceid><addsrcrecordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFq7pNZSqkXKLhQ1yHNxaa0M9MkA-2L-QK-mNF27eocON85h-8H4BqjCUaC3vMJwghzJE7ACCPZVLXg8hSMECKkIkzKc3CR0gohjCVjI6Bmu75rXZuDXkPrjN5Dl3LY6OwS9F2Eeemg1Zve2TL2nRlSaD_hm1nG7y9bWheh2w46h66FoYVul10MZc92Gx3adAnOvF4nd3WsY_DxOHufPlfz16eX6cO8MoSTXFlZS-T1gmJqiCAUEccJZr4xxmunqRfeGCOoaAwX1mG0YIyK2jSW0AWWko7BzeFuH7vtUBTUqhtiW14qImvMCKt5U6jbA2Vil1J0XvWxuMa9wkj95qe4OuZX2LsDm0zIf37_wD-GiHEq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2871424759</pqid></control><display><type>article</type><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</creator><creatorcontrib>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</creatorcontrib><description>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0101506</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Boundary conditions ; Defocusing ; Differential equations ; Operators (mathematics) ; Physics ; Schrodinger equation ; Smooth boundaries ; Stability ; Uniqueness theorems ; Wave equations</subject><ispartof>Journal of mathematical physics, 2023-10, Vol.64 (10)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</cites><orcidid>0000-0001-5493-5918 ; 0000-0001-5638-3272 ; 0000-0002-1047-3763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0101506$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76256</link.rule.ids></links><search><creatorcontrib>Cavalcanti, Marcelo M.</creatorcontrib><creatorcontrib>Corrêa, Wellington J.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, Valéria Neves</creatorcontrib><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><title>Journal of mathematical physics</title><description>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</description><subject>Boundary conditions</subject><subject>Defocusing</subject><subject>Differential equations</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Schrodinger equation</subject><subject>Smooth boundaries</subject><subject>Stability</subject><subject>Uniqueness theorems</subject><subject>Wave equations</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtKAzEUhoMoWKsL3yDgSmFq7pNZSqkXKLhQ1yHNxaa0M9MkA-2L-QK-mNF27eocON85h-8H4BqjCUaC3vMJwghzJE7ACCPZVLXg8hSMECKkIkzKc3CR0gohjCVjI6Bmu75rXZuDXkPrjN5Dl3LY6OwS9F2Eeemg1Zve2TL2nRlSaD_hm1nG7y9bWheh2w46h66FoYVul10MZc92Gx3adAnOvF4nd3WsY_DxOHufPlfz16eX6cO8MoSTXFlZS-T1gmJqiCAUEccJZr4xxmunqRfeGCOoaAwX1mG0YIyK2jSW0AWWko7BzeFuH7vtUBTUqhtiW14qImvMCKt5U6jbA2Vil1J0XvWxuMa9wkj95qe4OuZX2LsDm0zIf37_wD-GiHEq</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Cavalcanti, Marcelo M.</creator><creator>Corrêa, Wellington J.</creator><creator>Domingos Cavalcanti, Valéria Neves</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5493-5918</orcidid><orcidid>https://orcid.org/0000-0001-5638-3272</orcidid><orcidid>https://orcid.org/0000-0002-1047-3763</orcidid></search><sort><creationdate>20231001</creationdate><title>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</title><author>Cavalcanti, Marcelo M. ; Corrêa, Wellington J. ; Domingos Cavalcanti, Valéria Neves</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c252t-d8780fab313c262302e5214f9ccfaea3f6fccc6369c56de10b44367c9d23b1883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary conditions</topic><topic>Defocusing</topic><topic>Differential equations</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Schrodinger equation</topic><topic>Smooth boundaries</topic><topic>Stability</topic><topic>Uniqueness theorems</topic><topic>Wave equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cavalcanti, Marcelo M.</creatorcontrib><creatorcontrib>Corrêa, Wellington J.</creatorcontrib><creatorcontrib>Domingos Cavalcanti, Valéria Neves</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cavalcanti, Marcelo M.</au><au>Corrêa, Wellington J.</au><au>Domingos Cavalcanti, Valéria Neves</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-10-01</date><risdate>2023</risdate><volume>64</volume><issue>10</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We are concerned with the existence as well as the exponential stability in H1-level for the damped defocusing Schrödinger equation posed in a two-dimensional exterior domain Ω with smooth boundary ∂Ω. The proofs of the existence are based on the properties of pseudo-differential operators introduced in Dehman et al. [Math. Z. 254, 729–749 (2006)] and a Strichartz estimate proved by Anton [Bull. Soc. Math. Fr. 136, 27–65 (2008)], while the exponential stability is achieved by combining arguments firstly considered by Zuazua [J. Math. Pures Appl. 9, 513–529 (1991)] for the wave equation adapted to the present context and a global uniqueness theorem. In addition, we proved propagation results for the linear Schrödinger equation for any dimensional and for any (reasonable) boundary conditions employing microlocal analysis.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0101506</doi><tpages>32</tpages><orcidid>https://orcid.org/0000-0001-5493-5918</orcidid><orcidid>https://orcid.org/0000-0001-5638-3272</orcidid><orcidid>https://orcid.org/0000-0002-1047-3763</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-10, Vol.64 (10)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0101506
source AIP Journals Complete; Alma/SFX Local Collection
subjects Boundary conditions
Defocusing
Differential equations
Operators (mathematics)
Physics
Schrodinger equation
Smooth boundaries
Stability
Uniqueness theorems
Wave equations
title Exponential decay estimates for the damped defocusing Schrödinger equation in exterior domains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A36%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exponential%20decay%20estimates%20for%20the%20damped%20defocusing%20Schr%C3%B6dinger%20equation%20in%20exterior%20domains&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Cavalcanti,%20Marcelo%20M.&rft.date=2023-10-01&rft.volume=64&rft.issue=10&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0101506&rft_dat=%3Cproquest_cross%3E2871424759%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2871424759&rft_id=info:pmid/&rfr_iscdi=true