Active mechanical metamaterial with embedded piezoelectric actuation

Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson’s ratio. These properties stem from the geometr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:APL materials 2022-09, Vol.10 (9), p.091117-091117-13
Hauptverfasser: Saravana Jothi, N. S., Hunt, A.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 091117-13
container_issue 9
container_start_page 091117
container_title APL materials
container_volume 10
creator Saravana Jothi, N. S.
Hunt, A.
description Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson’s ratio. These properties stem from the geometry and arrangement of the metamaterial unit elements and, therefore, cannot be altered after fabrication. Active mechanical metamaterials aim to overcome this limitation by embedding actuation into the metamaterial unit elements to alter the material properties or mechanical state. This could pave the way for a variety of applications in industries, such as aerospace, robotics, and high-tech engineering. This work proposes and studies an active mechanical metamaterial concept that can actively control the force and deformation distribution within its lattice. Individually controllable actuation units are designed based on piezostack actuators and compliant mechanisms and interconnected into an active metamaterial lattice. Both the actuation units and the metamaterial lattice are modeled, built, and experimentally studied. In experiments, the actuation units attained 240 and 1510 µm extensions, respectively, in quasi-static and resonant operation at 81 Hz, and 0.3 N blocked force at frequencies up to 100 Hz. Quasi-static experiments on the active metamaterial lattice prototype demonstrated morphing into four different configurations: Tilt left, tilt right, convex, and concave profiles. This demonstrated the feasibility of altering the force and deformation distribution within the mechanical metamaterial lattice. Much more research is expected to follow in this field since the actively tuneable mechanical state and properties can enable qualitatively new engineering solutions.
doi_str_mv 10.1063/5.0101420
format Article
fullrecord <record><control><sourceid>scitation_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0101420</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_9d113dd29a2345629f512ebee2a36ace</doaj_id><sourcerecordid>apm</sourcerecordid><originalsourceid>FETCH-LOGICAL-c365t-e5cfb50f22cc7b06eca2ec7a641f56b482eed627edf818746723fb02fdf05fa3</originalsourceid><addsrcrecordid>eNp9kE1Lw0AQhhdRsNQe_Ae5KqTuR3aTHkv9KhS89OBtmczO2i1JUzaror_eaIt48jTvDA8PzMvYpeBTwY260VMuuCgkP2EjKYzJtZLPp3_yOZv0_ZbzAVOqmpkRu51jCm-UtYQb2AWEZogJWkgUw7C8h7TJqK3JOXLZPtBnRw1higEzwPQKKXS7C3bmoelpcpxjtr6_Wy8e89XTw3IxX-WojE45afS15l5KxLLmhhAkYQmmEF6buqgkkTOyJOcrUZWFKaXyNZfeea49qDFbHrSug63dx9BC_LAdBPtz6OKLhZgCNmRnTgjlnJyBVIU2cua1kFQTSVAGkAbX1cGFsev7SP7XJ7j9LtNqeyxzYK8PbI8h_Tz8D_wF0J504g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Active mechanical metamaterial with embedded piezoelectric actuation</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Saravana Jothi, N. S. ; Hunt, A.</creator><creatorcontrib>Saravana Jothi, N. S. ; Hunt, A.</creatorcontrib><description>Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson’s ratio. These properties stem from the geometry and arrangement of the metamaterial unit elements and, therefore, cannot be altered after fabrication. Active mechanical metamaterials aim to overcome this limitation by embedding actuation into the metamaterial unit elements to alter the material properties or mechanical state. This could pave the way for a variety of applications in industries, such as aerospace, robotics, and high-tech engineering. This work proposes and studies an active mechanical metamaterial concept that can actively control the force and deformation distribution within its lattice. Individually controllable actuation units are designed based on piezostack actuators and compliant mechanisms and interconnected into an active metamaterial lattice. Both the actuation units and the metamaterial lattice are modeled, built, and experimentally studied. In experiments, the actuation units attained 240 and 1510 µm extensions, respectively, in quasi-static and resonant operation at 81 Hz, and 0.3 N blocked force at frequencies up to 100 Hz. Quasi-static experiments on the active metamaterial lattice prototype demonstrated morphing into four different configurations: Tilt left, tilt right, convex, and concave profiles. This demonstrated the feasibility of altering the force and deformation distribution within the mechanical metamaterial lattice. Much more research is expected to follow in this field since the actively tuneable mechanical state and properties can enable qualitatively new engineering solutions.</description><identifier>ISSN: 2166-532X</identifier><identifier>EISSN: 2166-532X</identifier><identifier>DOI: 10.1063/5.0101420</identifier><identifier>CODEN: AMPADS</identifier><language>eng</language><publisher>AIP Publishing LLC</publisher><ispartof>APL materials, 2022-09, Vol.10 (9), p.091117-091117-13</ispartof><rights>Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c365t-e5cfb50f22cc7b06eca2ec7a641f56b482eed627edf818746723fb02fdf05fa3</citedby><cites>FETCH-LOGICAL-c365t-e5cfb50f22cc7b06eca2ec7a641f56b482eed627edf818746723fb02fdf05fa3</cites><orcidid>0000-0002-7535-6189 ; 0000-0001-5350-7719</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Saravana Jothi, N. S.</creatorcontrib><creatorcontrib>Hunt, A.</creatorcontrib><title>Active mechanical metamaterial with embedded piezoelectric actuation</title><title>APL materials</title><description>Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson’s ratio. These properties stem from the geometry and arrangement of the metamaterial unit elements and, therefore, cannot be altered after fabrication. Active mechanical metamaterials aim to overcome this limitation by embedding actuation into the metamaterial unit elements to alter the material properties or mechanical state. This could pave the way for a variety of applications in industries, such as aerospace, robotics, and high-tech engineering. This work proposes and studies an active mechanical metamaterial concept that can actively control the force and deformation distribution within its lattice. Individually controllable actuation units are designed based on piezostack actuators and compliant mechanisms and interconnected into an active metamaterial lattice. Both the actuation units and the metamaterial lattice are modeled, built, and experimentally studied. In experiments, the actuation units attained 240 and 1510 µm extensions, respectively, in quasi-static and resonant operation at 81 Hz, and 0.3 N blocked force at frequencies up to 100 Hz. Quasi-static experiments on the active metamaterial lattice prototype demonstrated morphing into four different configurations: Tilt left, tilt right, convex, and concave profiles. This demonstrated the feasibility of altering the force and deformation distribution within the mechanical metamaterial lattice. Much more research is expected to follow in this field since the actively tuneable mechanical state and properties can enable qualitatively new engineering solutions.</description><issn>2166-532X</issn><issn>2166-532X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1Lw0AQhhdRsNQe_Ae5KqTuR3aTHkv9KhS89OBtmczO2i1JUzaror_eaIt48jTvDA8PzMvYpeBTwY260VMuuCgkP2EjKYzJtZLPp3_yOZv0_ZbzAVOqmpkRu51jCm-UtYQb2AWEZogJWkgUw7C8h7TJqK3JOXLZPtBnRw1higEzwPQKKXS7C3bmoelpcpxjtr6_Wy8e89XTw3IxX-WojE45afS15l5KxLLmhhAkYQmmEF6buqgkkTOyJOcrUZWFKaXyNZfeea49qDFbHrSug63dx9BC_LAdBPtz6OKLhZgCNmRnTgjlnJyBVIU2cua1kFQTSVAGkAbX1cGFsev7SP7XJ7j9LtNqeyxzYK8PbI8h_Tz8D_wF0J504g</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Saravana Jothi, N. S.</creator><creator>Hunt, A.</creator><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7535-6189</orcidid><orcidid>https://orcid.org/0000-0001-5350-7719</orcidid></search><sort><creationdate>20220901</creationdate><title>Active mechanical metamaterial with embedded piezoelectric actuation</title><author>Saravana Jothi, N. S. ; Hunt, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c365t-e5cfb50f22cc7b06eca2ec7a641f56b482eed627edf818746723fb02fdf05fa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saravana Jothi, N. S.</creatorcontrib><creatorcontrib>Hunt, A.</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>APL materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saravana Jothi, N. S.</au><au>Hunt, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Active mechanical metamaterial with embedded piezoelectric actuation</atitle><jtitle>APL materials</jtitle><date>2022-09-01</date><risdate>2022</risdate><volume>10</volume><issue>9</issue><spage>091117</spage><epage>091117-13</epage><pages>091117-091117-13</pages><issn>2166-532X</issn><eissn>2166-532X</eissn><coden>AMPADS</coden><abstract>Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson’s ratio. These properties stem from the geometry and arrangement of the metamaterial unit elements and, therefore, cannot be altered after fabrication. Active mechanical metamaterials aim to overcome this limitation by embedding actuation into the metamaterial unit elements to alter the material properties or mechanical state. This could pave the way for a variety of applications in industries, such as aerospace, robotics, and high-tech engineering. This work proposes and studies an active mechanical metamaterial concept that can actively control the force and deformation distribution within its lattice. Individually controllable actuation units are designed based on piezostack actuators and compliant mechanisms and interconnected into an active metamaterial lattice. Both the actuation units and the metamaterial lattice are modeled, built, and experimentally studied. In experiments, the actuation units attained 240 and 1510 µm extensions, respectively, in quasi-static and resonant operation at 81 Hz, and 0.3 N blocked force at frequencies up to 100 Hz. Quasi-static experiments on the active metamaterial lattice prototype demonstrated morphing into four different configurations: Tilt left, tilt right, convex, and concave profiles. This demonstrated the feasibility of altering the force and deformation distribution within the mechanical metamaterial lattice. Much more research is expected to follow in this field since the actively tuneable mechanical state and properties can enable qualitatively new engineering solutions.</abstract><pub>AIP Publishing LLC</pub><doi>10.1063/5.0101420</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7535-6189</orcidid><orcidid>https://orcid.org/0000-0001-5350-7719</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2166-532X
ispartof APL materials, 2022-09, Vol.10 (9), p.091117-091117-13
issn 2166-532X
2166-532X
language eng
recordid cdi_crossref_primary_10_1063_5_0101420
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Active mechanical metamaterial with embedded piezoelectric actuation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T17%3A31%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-scitation_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Active%20mechanical%20metamaterial%20with%20embedded%20piezoelectric%20actuation&rft.jtitle=APL%20materials&rft.au=Saravana%20Jothi,%20N.%20S.&rft.date=2022-09-01&rft.volume=10&rft.issue=9&rft.spage=091117&rft.epage=091117-13&rft.pages=091117-091117-13&rft.issn=2166-532X&rft.eissn=2166-532X&rft.coden=AMPADS&rft_id=info:doi/10.1063/5.0101420&rft_dat=%3Cscitation_cross%3Eapm%3C/scitation_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_9d113dd29a2345629f512ebee2a36ace&rfr_iscdi=true