Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations

In this paper, we show a connection between fractional Schrödinger equations with power-law nonlinearity and fractional Schrödinger equations with logarithm-law nonlinearity. We prove that ground state solutions of power-law fractional equations, as p → 2+, converge to a ground state solution of log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2023-01, Vol.64 (1)
Hauptverfasser: An, Xiaoming, Yang, Xian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Journal of mathematical physics
container_volume 64
creator An, Xiaoming
Yang, Xian
description In this paper, we show a connection between fractional Schrödinger equations with power-law nonlinearity and fractional Schrödinger equations with logarithm-law nonlinearity. We prove that ground state solutions of power-law fractional equations, as p → 2+, converge to a ground state solution of logarithm-law fractional equations. In particular, we provide a new proof to the existence of a ground state of logarithm-law fractional Schrödinger equations.
doi_str_mv 10.1063/5.0096488
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0096488</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2767334658</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-490fe75380849512544e0f2f10badfe49e0fce119bdb0e00f5d34435d4c66eb33</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcYcKUw9WSSzGUpxRsUXKgbNyGTOWmnTJNpMrX4Yr6AL-b0gi4EV-H8fBxOfkLOKYwopOxajACKlOf5ARlQyIs4S0V-SAYASRInfX5MTkKYA1Cacz4gb2Nn39FP0WqMjHeLqHVr9HGj1lHnosZNla-72WIb1Dayzja1ReV7rHRXO6ua6FnP_NdnVdsp-giXK7XJwyk5MqoJeLZ_h-T17vZl_BBPnu4fxzeTWCci62JegMFMsBxyXgiaCM4RTGIolKoyyIt-0khpUVYlIIARFeOciYrrNMWSsSG52O1tvVuuMHRy7la-vyvIJEszxnhfQa8ud0p7F4JHI1tfL5T_kBTkpjop5L663l7tbNB1t_3MD353_hfKtjL_4b-bvwHwK35C</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2767334658</pqid></control><display><type>article</type><title>Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>An, Xiaoming ; Yang, Xian</creator><creatorcontrib>An, Xiaoming ; Yang, Xian</creatorcontrib><description>In this paper, we show a connection between fractional Schrödinger equations with power-law nonlinearity and fractional Schrödinger equations with logarithm-law nonlinearity. We prove that ground state solutions of power-law fractional equations, as p → 2+, converge to a ground state solution of logarithm-law fractional equations. In particular, we provide a new proof to the existence of a ground state of logarithm-law fractional Schrödinger equations.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0096488</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Convergence ; Ground state ; Logarithms ; Mathematical analysis ; Nonlinearity ; Physics ; Power law ; Schrodinger equation</subject><ispartof>Journal of mathematical physics, 2023-01, Vol.64 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-490fe75380849512544e0f2f10badfe49e0fce119bdb0e00f5d34435d4c66eb33</citedby><cites>FETCH-LOGICAL-c257t-490fe75380849512544e0f2f10badfe49e0fce119bdb0e00f5d34435d4c66eb33</cites><orcidid>0000-0003-1069-1143</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0096488$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>An, Xiaoming</creatorcontrib><creatorcontrib>Yang, Xian</creatorcontrib><title>Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations</title><title>Journal of mathematical physics</title><description>In this paper, we show a connection between fractional Schrödinger equations with power-law nonlinearity and fractional Schrödinger equations with logarithm-law nonlinearity. We prove that ground state solutions of power-law fractional equations, as p → 2+, converge to a ground state solution of logarithm-law fractional equations. In particular, we provide a new proof to the existence of a ground state of logarithm-law fractional Schrödinger equations.</description><subject>Convergence</subject><subject>Ground state</subject><subject>Logarithms</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><subject>Physics</subject><subject>Power law</subject><subject>Schrodinger equation</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcYcKUw9WSSzGUpxRsUXKgbNyGTOWmnTJNpMrX4Yr6AL-b0gi4EV-H8fBxOfkLOKYwopOxajACKlOf5ARlQyIs4S0V-SAYASRInfX5MTkKYA1Cacz4gb2Nn39FP0WqMjHeLqHVr9HGj1lHnosZNla-72WIb1Dayzja1ReV7rHRXO6ua6FnP_NdnVdsp-giXK7XJwyk5MqoJeLZ_h-T17vZl_BBPnu4fxzeTWCci62JegMFMsBxyXgiaCM4RTGIolKoyyIt-0khpUVYlIIARFeOciYrrNMWSsSG52O1tvVuuMHRy7la-vyvIJEszxnhfQa8ud0p7F4JHI1tfL5T_kBTkpjop5L663l7tbNB1t_3MD353_hfKtjL_4b-bvwHwK35C</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>An, Xiaoming</creator><creator>Yang, Xian</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1069-1143</orcidid></search><sort><creationdate>20230101</creationdate><title>Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations</title><author>An, Xiaoming ; Yang, Xian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-490fe75380849512544e0f2f10badfe49e0fce119bdb0e00f5d34435d4c66eb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Convergence</topic><topic>Ground state</topic><topic>Logarithms</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><topic>Physics</topic><topic>Power law</topic><topic>Schrodinger equation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>An, Xiaoming</creatorcontrib><creatorcontrib>Yang, Xian</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>An, Xiaoming</au><au>Yang, Xian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations</atitle><jtitle>Journal of mathematical physics</jtitle><date>2023-01-01</date><risdate>2023</risdate><volume>64</volume><issue>1</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we show a connection between fractional Schrödinger equations with power-law nonlinearity and fractional Schrödinger equations with logarithm-law nonlinearity. We prove that ground state solutions of power-law fractional equations, as p → 2+, converge to a ground state solution of logarithm-law fractional equations. In particular, we provide a new proof to the existence of a ground state of logarithm-law fractional Schrödinger equations.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0096488</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1069-1143</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2023-01, Vol.64 (1)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0096488
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convergence
Ground state
Logarithms
Mathematical analysis
Nonlinearity
Physics
Power law
Schrodinger equation
title Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T22%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Convergence%20from%20power-law%20to%20logarithm-law%20in%20nonlinear%20fractional%20Schr%C3%B6dinger%20equations&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=An,%20Xiaoming&rft.date=2023-01-01&rft.volume=64&rft.issue=1&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0096488&rft_dat=%3Cproquest_cross%3E2767334658%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2767334658&rft_id=info:pmid/&rfr_iscdi=true