Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition

Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicabilit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2022-06, Vol.34 (6)
Hauptverfasser: Schiødt, M., Hodžić, A., Evrard, F., Hausmann, M., Van Wachem, B., Velte, C. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 34
creator Schiødt, M.
Hodžić, A.
Evrard, F.
Hausmann, M.
Van Wachem, B.
Velte, C. M.
description Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.
doi_str_mv 10.1063/5.0092543
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0092543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672816343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC13w1SY-y-AULXvZesmnazdImNUmF9eBvt2UXPQieZhgeXmYGgGuMFhhxep8vECpIzugJmGEki0xwzk-nXqCMc4rPwUWMO4QQLQifga_lVgWlkwn207oGrlQTlGuscrBXIVndGljtneqsjtA6WBmt9hPc-s43xhk_jPPoU_C91TANYTO0xmkDhzixfpybAH1IW994p9opwXe9jzZZ7y7BWa3aaK6OdQ7WT4_r5Uu2ent-XT6sMk0YSRkmXHNKKMayEBTlnKkai6niQlJRCYwrxDaMCCxlzpBkQhfKMMGNZLimc3BziB3XeR9MTOXOD2HcJpaECyIxp4yO6vagdPAxBlOXfbCdCvsSo3L6bpmXx--O9u5go7ZJTaf84A8ffmHZV_V_-G_yNy9diZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672816343</pqid></control><display><type>article</type><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</creator><creatorcontrib>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</creatorcontrib><description>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0092543</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Fluid dynamics ; Fluid flow ; Isotropic turbulence ; Modal analysis ; Multiphase flow ; Particle decay ; Particle interactions ; Particle trajectories ; Phases ; Physics ; Proper Orthogonal Decomposition</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</citedby><cites>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</cites><orcidid>0000-0002-5421-1714 ; 0000-0002-0106-6808 ; 0000-0002-4342-4749 ; 0000-0002-8657-0383 ; 0000-0003-1307-5290 ; 0000-0002-5399-4075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Schiødt, M.</creatorcontrib><creatorcontrib>Hodžić, A.</creatorcontrib><creatorcontrib>Evrard, F.</creatorcontrib><creatorcontrib>Hausmann, M.</creatorcontrib><creatorcontrib>Van Wachem, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><title>Physics of fluids (1994)</title><description>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</description><subject>Convergence</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Isotropic turbulence</subject><subject>Modal analysis</subject><subject>Multiphase flow</subject><subject>Particle decay</subject><subject>Particle interactions</subject><subject>Particle trajectories</subject><subject>Phases</subject><subject>Physics</subject><subject>Proper Orthogonal Decomposition</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC13w1SY-y-AULXvZesmnazdImNUmF9eBvt2UXPQieZhgeXmYGgGuMFhhxep8vECpIzugJmGEki0xwzk-nXqCMc4rPwUWMO4QQLQifga_lVgWlkwn207oGrlQTlGuscrBXIVndGljtneqsjtA6WBmt9hPc-s43xhk_jPPoU_C91TANYTO0xmkDhzixfpybAH1IW994p9opwXe9jzZZ7y7BWa3aaK6OdQ7WT4_r5Uu2ent-XT6sMk0YSRkmXHNKKMayEBTlnKkai6niQlJRCYwrxDaMCCxlzpBkQhfKMMGNZLimc3BziB3XeR9MTOXOD2HcJpaECyIxp4yO6vagdPAxBlOXfbCdCvsSo3L6bpmXx--O9u5go7ZJTaf84A8ffmHZV_V_-G_yNy9diZ8</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Schiødt, M.</creator><creator>Hodžić, A.</creator><creator>Evrard, F.</creator><creator>Hausmann, M.</creator><creator>Van Wachem, B.</creator><creator>Velte, C. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5421-1714</orcidid><orcidid>https://orcid.org/0000-0002-0106-6808</orcidid><orcidid>https://orcid.org/0000-0002-4342-4749</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid><orcidid>https://orcid.org/0000-0003-1307-5290</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></search><sort><creationdate>202206</creationdate><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><author>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Isotropic turbulence</topic><topic>Modal analysis</topic><topic>Multiphase flow</topic><topic>Particle decay</topic><topic>Particle interactions</topic><topic>Particle trajectories</topic><topic>Phases</topic><topic>Physics</topic><topic>Proper Orthogonal Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiødt, M.</creatorcontrib><creatorcontrib>Hodžić, A.</creatorcontrib><creatorcontrib>Evrard, F.</creatorcontrib><creatorcontrib>Hausmann, M.</creatorcontrib><creatorcontrib>Van Wachem, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiødt, M.</au><au>Hodžić, A.</au><au>Evrard, F.</au><au>Hausmann, M.</au><au>Van Wachem, B.</au><au>Velte, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0092543</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5421-1714</orcidid><orcidid>https://orcid.org/0000-0002-0106-6808</orcidid><orcidid>https://orcid.org/0000-0002-4342-4749</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid><orcidid>https://orcid.org/0000-0003-1307-5290</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2022-06, Vol.34 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0092543
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convergence
Fluid dynamics
Fluid flow
Isotropic turbulence
Modal analysis
Multiphase flow
Particle decay
Particle interactions
Particle trajectories
Phases
Physics
Proper Orthogonal Decomposition
title Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Lagrangian%20particle%20dynamics%20in%20decaying%20homogeneous%20isotropic%20turbulence%20using%20proper%20orthogonal%20decomposition&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Schi%C3%B8dt,%20M.&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0092543&rft_dat=%3Cproquest_cross%3E2672816343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672816343&rft_id=info:pmid/&rfr_iscdi=true