Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition
Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicabilit...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2022-06, Vol.34 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 34 |
creator | Schiødt, M. Hodžić, A. Evrard, F. Hausmann, M. Van Wachem, B. Velte, C. M. |
description | Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant. |
doi_str_mv | 10.1063/5.0092543 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0092543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2672816343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC13w1SY-y-AULXvZesmnazdImNUmF9eBvt2UXPQieZhgeXmYGgGuMFhhxep8vECpIzugJmGEki0xwzk-nXqCMc4rPwUWMO4QQLQifga_lVgWlkwn207oGrlQTlGuscrBXIVndGljtneqsjtA6WBmt9hPc-s43xhk_jPPoU_C91TANYTO0xmkDhzixfpybAH1IW994p9opwXe9jzZZ7y7BWa3aaK6OdQ7WT4_r5Uu2ent-XT6sMk0YSRkmXHNKKMayEBTlnKkai6niQlJRCYwrxDaMCCxlzpBkQhfKMMGNZLimc3BziB3XeR9MTOXOD2HcJpaECyIxp4yO6vagdPAxBlOXfbCdCvsSo3L6bpmXx--O9u5go7ZJTaf84A8ffmHZV_V_-G_yNy9diZ8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672816343</pqid></control><display><type>article</type><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</creator><creatorcontrib>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</creatorcontrib><description>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0092543</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convergence ; Fluid dynamics ; Fluid flow ; Isotropic turbulence ; Modal analysis ; Multiphase flow ; Particle decay ; Particle interactions ; Particle trajectories ; Phases ; Physics ; Proper Orthogonal Decomposition</subject><ispartof>Physics of fluids (1994), 2022-06, Vol.34 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</citedby><cites>FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</cites><orcidid>0000-0002-5421-1714 ; 0000-0002-0106-6808 ; 0000-0002-4342-4749 ; 0000-0002-8657-0383 ; 0000-0003-1307-5290 ; 0000-0002-5399-4075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids></links><search><creatorcontrib>Schiødt, M.</creatorcontrib><creatorcontrib>Hodžić, A.</creatorcontrib><creatorcontrib>Evrard, F.</creatorcontrib><creatorcontrib>Hausmann, M.</creatorcontrib><creatorcontrib>Van Wachem, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><title>Physics of fluids (1994)</title><description>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</description><subject>Convergence</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Isotropic turbulence</subject><subject>Modal analysis</subject><subject>Multiphase flow</subject><subject>Particle decay</subject><subject>Particle interactions</subject><subject>Particle trajectories</subject><subject>Phases</subject><subject>Physics</subject><subject>Proper Orthogonal Decomposition</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwJNC13w1SY-y-AULXvZesmnazdImNUmF9eBvt2UXPQieZhgeXmYGgGuMFhhxep8vECpIzugJmGEki0xwzk-nXqCMc4rPwUWMO4QQLQifga_lVgWlkwn207oGrlQTlGuscrBXIVndGljtneqsjtA6WBmt9hPc-s43xhk_jPPoU_C91TANYTO0xmkDhzixfpybAH1IW994p9opwXe9jzZZ7y7BWa3aaK6OdQ7WT4_r5Uu2ent-XT6sMk0YSRkmXHNKKMayEBTlnKkai6niQlJRCYwrxDaMCCxlzpBkQhfKMMGNZLimc3BziB3XeR9MTOXOD2HcJpaECyIxp4yO6vagdPAxBlOXfbCdCvsSo3L6bpmXx--O9u5go7ZJTaf84A8ffmHZV_V_-G_yNy9diZ8</recordid><startdate>202206</startdate><enddate>202206</enddate><creator>Schiødt, M.</creator><creator>Hodžić, A.</creator><creator>Evrard, F.</creator><creator>Hausmann, M.</creator><creator>Van Wachem, B.</creator><creator>Velte, C. M.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5421-1714</orcidid><orcidid>https://orcid.org/0000-0002-0106-6808</orcidid><orcidid>https://orcid.org/0000-0002-4342-4749</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid><orcidid>https://orcid.org/0000-0003-1307-5290</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></search><sort><creationdate>202206</creationdate><title>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</title><author>Schiødt, M. ; Hodžić, A. ; Evrard, F. ; Hausmann, M. ; Van Wachem, B. ; Velte, C. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c242t-126c63231189730564af17056419837d711d04b427188540847c9ae476e841f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Convergence</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Isotropic turbulence</topic><topic>Modal analysis</topic><topic>Multiphase flow</topic><topic>Particle decay</topic><topic>Particle interactions</topic><topic>Particle trajectories</topic><topic>Phases</topic><topic>Physics</topic><topic>Proper Orthogonal Decomposition</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schiødt, M.</creatorcontrib><creatorcontrib>Hodžić, A.</creatorcontrib><creatorcontrib>Evrard, F.</creatorcontrib><creatorcontrib>Hausmann, M.</creatorcontrib><creatorcontrib>Van Wachem, B.</creatorcontrib><creatorcontrib>Velte, C. M.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schiødt, M.</au><au>Hodžić, A.</au><au>Evrard, F.</au><au>Hausmann, M.</au><au>Van Wachem, B.</au><au>Velte, C. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2022-06</date><risdate>2022</risdate><volume>34</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Particle proper orthogonal decomposition (PPOD) is demonstrated as a method for extraction of temporal statistical information on dispersed (discrete) phases of multiphase flows. PPOD is an extension of the classical Eulerian POD, differentiating itself by its Lagrangian formulation and applicability to discrete phases in both stationary and non-stationary flows. The method is demonstrated on a test case of decaying homogeneous isotropic turbulence, where particle data are generated by one-way coupled simulations. Here, particle positions and velocities are integrated forward in time in a Lagrangian manner. The results demonstrate a proof of concept of the PPOD, and its potential for applicability. It is demonstrated that PPOD modes are able to capture both large scale temporal flow features as well as smaller scale variations. Additionally, particle trajectories/velocities are approximated using a subset of the PPOD basis where convergence is demonstrated. In the application of PPOD on multiple particle realizations, an increase in the convergence rate is observed as the initial particle separation is decreased. When decomposing both solid (rigid) and fluid particle velocities, the method provides the possibility of modal analysis of fluid–particle interactions in multiphase flows. For various configurations of rigid particle densities, the modal parallelity between the two phases is mapped, revealing a higher parallelity when the rigid particles are neutrally buoyant.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0092543</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-5421-1714</orcidid><orcidid>https://orcid.org/0000-0002-0106-6808</orcidid><orcidid>https://orcid.org/0000-0002-4342-4749</orcidid><orcidid>https://orcid.org/0000-0002-8657-0383</orcidid><orcidid>https://orcid.org/0000-0003-1307-5290</orcidid><orcidid>https://orcid.org/0000-0002-5399-4075</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2022-06, Vol.34 (6) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0092543 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Convergence Fluid dynamics Fluid flow Isotropic turbulence Modal analysis Multiphase flow Particle decay Particle interactions Particle trajectories Phases Physics Proper Orthogonal Decomposition |
title | Characterizing Lagrangian particle dynamics in decaying homogeneous isotropic turbulence using proper orthogonal decomposition |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T07%3A50%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterizing%20Lagrangian%20particle%20dynamics%20in%20decaying%20homogeneous%20isotropic%20turbulence%20using%20proper%20orthogonal%20decomposition&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Schi%C3%B8dt,%20M.&rft.date=2022-06&rft.volume=34&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0092543&rft_dat=%3Cproquest_cross%3E2672816343%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672816343&rft_id=info:pmid/&rfr_iscdi=true |