Density functional theory of water with the machine-learned DM21 functional

The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-04, Vol.156 (16)
Hauptverfasser: Palos, Etienne, Lambros, Eleftherios, Dasgupta, Saswata, Paesani, Francesco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 16
container_start_page
container_title The Journal of chemical physics
container_volume 156
creator Palos, Etienne
Lambros, Eleftherios
Dasgupta, Saswata
Paesani, Francesco
description The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn–Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.
doi_str_mv 10.1063/5.0090862
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0090862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2656908975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-a870165ecb0970ff8ca3b1f99f19fddb7ef024f757c643d9c4a9e539ad89920a3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW9Q9KTQ-SZtkuYom_9w4kXPIUsT2rE1M0kd-_a2dKggeHoh_PLkzYPQOYYJBpbd0AmAgIKRAzTCUIiUMwGHaARAcCoYsGN0EsISADAn-Qg9z0wT6rhLbNvoWLtGrZJYGed3ibPJVkXjk20dq_4wWStd1Y1JV0b5xpTJ7IXgXxdP0ZFVq2DO9nOM3u_v3qaP6fz14Wl6O091hkVMVcEBM2r0AgQHawutsgW2QlgsbFkuuLFAcssp1yzPSqFzJQzNhCoLIQiobIwuhlwXYi2DrqPRlXZNY3SUuGCUkKxDlwPaePfRmhDl0rW-2zJIwmhXSiE47dTVoLR3IXhj5cbXa-V3EoPsC5VU7gvt7PVg-xdV_-Vv_On8D5Sb0v6H_yZ_ARljgus</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2656908975</pqid></control><display><type>article</type><title>Density functional theory of water with the machine-learned DM21 functional</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Palos, Etienne ; Lambros, Eleftherios ; Dasgupta, Saswata ; Paesani, Francesco</creator><creatorcontrib>Palos, Etienne ; Lambros, Eleftherios ; Dasgupta, Saswata ; Paesani, Francesco</creatorcontrib><description>The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn–Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0090862</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Bonding strength ; Clusters ; Density functional theory ; Errors ; Hydrogen bonds ; Physical properties ; Physics ; Pressure ; Room temperature ; Water</subject><ispartof>The Journal of chemical physics, 2022-04, Vol.156 (16)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-a870165ecb0970ff8ca3b1f99f19fddb7ef024f757c643d9c4a9e539ad89920a3</citedby><cites>FETCH-LOGICAL-c319t-a870165ecb0970ff8ca3b1f99f19fddb7ef024f757c643d9c4a9e539ad89920a3</cites><orcidid>0000-0002-8014-8376 ; 0000-0003-2171-0792 ; 0000-0002-4451-1203 ; 0000000280148376 ; 0000000321710792 ; 0000000244511203</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0090862$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1865223$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Palos, Etienne</creatorcontrib><creatorcontrib>Lambros, Eleftherios</creatorcontrib><creatorcontrib>Dasgupta, Saswata</creatorcontrib><creatorcontrib>Paesani, Francesco</creatorcontrib><title>Density functional theory of water with the machine-learned DM21 functional</title><title>The Journal of chemical physics</title><description>The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn–Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.</description><subject>Bonding strength</subject><subject>Clusters</subject><subject>Density functional theory</subject><subject>Errors</subject><subject>Hydrogen bonds</subject><subject>Physical properties</subject><subject>Physics</subject><subject>Pressure</subject><subject>Room temperature</subject><subject>Water</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW9Q9KTQ-SZtkuYom_9w4kXPIUsT2rE1M0kd-_a2dKggeHoh_PLkzYPQOYYJBpbd0AmAgIKRAzTCUIiUMwGHaARAcCoYsGN0EsISADAn-Qg9z0wT6rhLbNvoWLtGrZJYGed3ibPJVkXjk20dq_4wWStd1Y1JV0b5xpTJ7IXgXxdP0ZFVq2DO9nOM3u_v3qaP6fz14Wl6O091hkVMVcEBM2r0AgQHawutsgW2QlgsbFkuuLFAcssp1yzPSqFzJQzNhCoLIQiobIwuhlwXYi2DrqPRlXZNY3SUuGCUkKxDlwPaePfRmhDl0rW-2zJIwmhXSiE47dTVoLR3IXhj5cbXa-V3EoPsC5VU7gvt7PVg-xdV_-Vv_On8D5Sb0v6H_yZ_ARljgus</recordid><startdate>20220428</startdate><enddate>20220428</enddate><creator>Palos, Etienne</creator><creator>Lambros, Eleftherios</creator><creator>Dasgupta, Saswata</creator><creator>Paesani, Francesco</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-8014-8376</orcidid><orcidid>https://orcid.org/0000-0003-2171-0792</orcidid><orcidid>https://orcid.org/0000-0002-4451-1203</orcidid><orcidid>https://orcid.org/0000000280148376</orcidid><orcidid>https://orcid.org/0000000321710792</orcidid><orcidid>https://orcid.org/0000000244511203</orcidid></search><sort><creationdate>20220428</creationdate><title>Density functional theory of water with the machine-learned DM21 functional</title><author>Palos, Etienne ; Lambros, Eleftherios ; Dasgupta, Saswata ; Paesani, Francesco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-a870165ecb0970ff8ca3b1f99f19fddb7ef024f757c643d9c4a9e539ad89920a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bonding strength</topic><topic>Clusters</topic><topic>Density functional theory</topic><topic>Errors</topic><topic>Hydrogen bonds</topic><topic>Physical properties</topic><topic>Physics</topic><topic>Pressure</topic><topic>Room temperature</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Palos, Etienne</creatorcontrib><creatorcontrib>Lambros, Eleftherios</creatorcontrib><creatorcontrib>Dasgupta, Saswata</creatorcontrib><creatorcontrib>Paesani, Francesco</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Palos, Etienne</au><au>Lambros, Eleftherios</au><au>Dasgupta, Saswata</au><au>Paesani, Francesco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Density functional theory of water with the machine-learned DM21 functional</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-04-28</date><risdate>2022</risdate><volume>156</volume><issue>16</issue><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The delicate interplay between functional-driven and density-driven errors in density functional theory (DFT) has hindered traditional density functional approximations (DFAs) from providing an accurate description of water for over 30 years. Recently, the deep-learned DeepMind 21 (DM21) functional has been shown to overcome the limitations of traditional DFAs as it is free of delocalization error. To determine if DM21 can enable a molecular-level description of the physical properties of aqueous systems within Kohn–Sham DFT, we assess the accuracy of the DM21 functional for neutral, protonated, and deprotonated water clusters. We find that the ability of DM21 to accurately predict the energetics of aqueous clusters varies significantly with cluster size. Additionally, we introduce the many-body MB-DM21 potential derived from DM21 data within the many-body expansion of the energy and use it in simulations of liquid water as a function of temperature at ambient pressure. We find that size-dependent functional-driven errors identified in the analysis of the energetics of small clusters calculated with the DM21 functional result in the MB-DM21 potential systematically overestimating the hydrogen-bond strength and, consequently, predicting a more ice-like local structure of water at room temperature.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0090862</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-8014-8376</orcidid><orcidid>https://orcid.org/0000-0003-2171-0792</orcidid><orcidid>https://orcid.org/0000-0002-4451-1203</orcidid><orcidid>https://orcid.org/0000000280148376</orcidid><orcidid>https://orcid.org/0000000321710792</orcidid><orcidid>https://orcid.org/0000000244511203</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-04, Vol.156 (16)
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0090862
source AIP Journals Complete; Alma/SFX Local Collection
subjects Bonding strength
Clusters
Density functional theory
Errors
Hydrogen bonds
Physical properties
Physics
Pressure
Room temperature
Water
title Density functional theory of water with the machine-learned DM21 functional
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T01%3A08%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Density%20functional%20theory%20of%20water%20with%20the%20machine-learned%20DM21%20functional&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Palos,%20Etienne&rft.date=2022-04-28&rft.volume=156&rft.issue=16&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0090862&rft_dat=%3Cproquest_cross%3E2656908975%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2656908975&rft_id=info:pmid/&rfr_iscdi=true