Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field

The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-05, Vol.120 (19)
Hauptverfasser: Reyes, Raustin, Nakazato, Takaya, Imaike, Nobuaki, Matsuda, Kazuyasu, Tsurumoto, Kazuya, Sekiguchi, Yuhei, Kosaka, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 19
container_start_page
container_title Applied physics letters
container_volume 120
creator Reyes, Raustin
Nakazato, Takaya
Imaike, Nobuaki
Matsuda, Kazuyasu
Tsurumoto, Kazuya
Sekiguchi, Yuhei
Kosaka, Hideo
description The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.
doi_str_mv 10.1063/5.0088155
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0088155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661222089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</originalsourceid><addsrcrecordid>eNqdkE1LAzEQQIMoWKsH_0HAk8JqPpp096jFLyh40fOSTSaSsknWJCvUX-9KK949zQw83sBD6JySa0okvxHXhNQ1FeIAzShZLitOaX2IZoQQXslG0GN0kvNmOgXjfIY-VtEPPRTAd9D3OBc1rR5UHhN4CAVHi41TPgaDw6h7UAnnwYWMx2AgYYX1ryAPqjg1ObbeQ0lbrAr-ghSxV-8BitPYOujNKTqyqs9wtp9z9PZw_7p6qtYvj8-r23WlF0tWqk51C6trrQ1rGqqkIkwRA8pqsFoQwa0E2lHZLRjvOMjOEGk6YKa2DBop-Rxd7LxDih8j5NJu4pjC9LJlUlLGGKmbibrcUTrFnBPYdkjOq7RtKWl_irai3Red2Ksdm7WbOrkY_gd_xvQHtoOx_Bs9eIca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661222089</pqid></control><display><type>article</type><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</creator><creatorcontrib>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</creatorcontrib><description>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0088155</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Applied physics ; Competition ; Diamonds ; Fault tolerance ; Hyperfine structure ; Information systems ; Magnetic fields ; Magnetism ; Measurement ; Microprocessors ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Symmetry</subject><ispartof>Applied physics letters, 2022-05, Vol.120 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</citedby><cites>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</cites><orcidid>0000-0002-3778-7236 ; 0000-0002-4880-1654 ; 0000-0002-8850-4646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0088155$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Reyes, Raustin</creatorcontrib><creatorcontrib>Nakazato, Takaya</creatorcontrib><creatorcontrib>Imaike, Nobuaki</creatorcontrib><creatorcontrib>Matsuda, Kazuyasu</creatorcontrib><creatorcontrib>Tsurumoto, Kazuya</creatorcontrib><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><title>Applied physics letters</title><description>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</description><subject>Accuracy</subject><subject>Applied physics</subject><subject>Competition</subject><subject>Diamonds</subject><subject>Fault tolerance</subject><subject>Hyperfine structure</subject><subject>Information systems</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Measurement</subject><subject>Microprocessors</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Symmetry</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQQIMoWKsH_0HAk8JqPpp096jFLyh40fOSTSaSsknWJCvUX-9KK949zQw83sBD6JySa0okvxHXhNQ1FeIAzShZLitOaX2IZoQQXslG0GN0kvNmOgXjfIY-VtEPPRTAd9D3OBc1rR5UHhN4CAVHi41TPgaDw6h7UAnnwYWMx2AgYYX1ryAPqjg1ObbeQ0lbrAr-ghSxV-8BitPYOujNKTqyqs9wtp9z9PZw_7p6qtYvj8-r23WlF0tWqk51C6trrQ1rGqqkIkwRA8pqsFoQwa0E2lHZLRjvOMjOEGk6YKa2DBop-Rxd7LxDih8j5NJu4pjC9LJlUlLGGKmbibrcUTrFnBPYdkjOq7RtKWl_irai3Red2Ksdm7WbOrkY_gd_xvQHtoOx_Bs9eIca</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Reyes, Raustin</creator><creator>Nakazato, Takaya</creator><creator>Imaike, Nobuaki</creator><creator>Matsuda, Kazuyasu</creator><creator>Tsurumoto, Kazuya</creator><creator>Sekiguchi, Yuhei</creator><creator>Kosaka, Hideo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3778-7236</orcidid><orcidid>https://orcid.org/0000-0002-4880-1654</orcidid><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid></search><sort><creationdate>20220509</creationdate><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><author>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Applied physics</topic><topic>Competition</topic><topic>Diamonds</topic><topic>Fault tolerance</topic><topic>Hyperfine structure</topic><topic>Information systems</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Measurement</topic><topic>Microprocessors</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes, Raustin</creatorcontrib><creatorcontrib>Nakazato, Takaya</creatorcontrib><creatorcontrib>Imaike, Nobuaki</creatorcontrib><creatorcontrib>Matsuda, Kazuyasu</creatorcontrib><creatorcontrib>Tsurumoto, Kazuya</creatorcontrib><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes, Raustin</au><au>Nakazato, Takaya</au><au>Imaike, Nobuaki</au><au>Matsuda, Kazuyasu</au><au>Tsurumoto, Kazuya</au><au>Sekiguchi, Yuhei</au><au>Kosaka, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</atitle><jtitle>Applied physics letters</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>120</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088155</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3778-7236</orcidid><orcidid>https://orcid.org/0000-0002-4880-1654</orcidid><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-05, Vol.120 (19)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0088155
source AIP Journals Complete; Alma/SFX Local Collection
subjects Accuracy
Applied physics
Competition
Diamonds
Fault tolerance
Hyperfine structure
Information systems
Magnetic fields
Magnetism
Measurement
Microprocessors
Quantum computers
Quantum computing
Quantum entanglement
Quantum phenomena
Qubits (quantum computing)
Symmetry
title Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Bell%20state%20measurement%20of%20diamond%20nuclear%20spins%20under%20a%20complete%20spatial%20symmetry%20at%20zero%20magnetic%20field&rft.jtitle=Applied%20physics%20letters&rft.au=Reyes,%20Raustin&rft.date=2022-05-09&rft.volume=120&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0088155&rft_dat=%3Cproquest_cross%3E2661222089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661222089&rft_id=info:pmid/&rfr_iscdi=true