Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field
The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-05, Vol.120 (19) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Reyes, Raustin Nakazato, Takaya Imaike, Nobuaki Matsuda, Kazuyasu Tsurumoto, Kazuya Sekiguchi, Yuhei Kosaka, Hideo |
description | The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks. |
doi_str_mv | 10.1063/5.0088155 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0088155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2661222089</sourcerecordid><originalsourceid>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</originalsourceid><addsrcrecordid>eNqdkE1LAzEQQIMoWKsH_0HAk8JqPpp096jFLyh40fOSTSaSsknWJCvUX-9KK949zQw83sBD6JySa0okvxHXhNQ1FeIAzShZLitOaX2IZoQQXslG0GN0kvNmOgXjfIY-VtEPPRTAd9D3OBc1rR5UHhN4CAVHi41TPgaDw6h7UAnnwYWMx2AgYYX1ryAPqjg1ObbeQ0lbrAr-ghSxV-8BitPYOujNKTqyqs9wtp9z9PZw_7p6qtYvj8-r23WlF0tWqk51C6trrQ1rGqqkIkwRA8pqsFoQwa0E2lHZLRjvOMjOEGk6YKa2DBop-Rxd7LxDih8j5NJu4pjC9LJlUlLGGKmbibrcUTrFnBPYdkjOq7RtKWl_irai3Red2Ksdm7WbOrkY_gd_xvQHtoOx_Bs9eIca</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2661222089</pqid></control><display><type>article</type><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</creator><creatorcontrib>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</creatorcontrib><description>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0088155</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Accuracy ; Applied physics ; Competition ; Diamonds ; Fault tolerance ; Hyperfine structure ; Information systems ; Magnetic fields ; Magnetism ; Measurement ; Microprocessors ; Quantum computers ; Quantum computing ; Quantum entanglement ; Quantum phenomena ; Qubits (quantum computing) ; Symmetry</subject><ispartof>Applied physics letters, 2022-05, Vol.120 (19)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</citedby><cites>FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</cites><orcidid>0000-0002-3778-7236 ; 0000-0002-4880-1654 ; 0000-0002-8850-4646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0088155$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Reyes, Raustin</creatorcontrib><creatorcontrib>Nakazato, Takaya</creatorcontrib><creatorcontrib>Imaike, Nobuaki</creatorcontrib><creatorcontrib>Matsuda, Kazuyasu</creatorcontrib><creatorcontrib>Tsurumoto, Kazuya</creatorcontrib><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><title>Applied physics letters</title><description>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</description><subject>Accuracy</subject><subject>Applied physics</subject><subject>Competition</subject><subject>Diamonds</subject><subject>Fault tolerance</subject><subject>Hyperfine structure</subject><subject>Information systems</subject><subject>Magnetic fields</subject><subject>Magnetism</subject><subject>Measurement</subject><subject>Microprocessors</subject><subject>Quantum computers</subject><subject>Quantum computing</subject><subject>Quantum entanglement</subject><subject>Quantum phenomena</subject><subject>Qubits (quantum computing)</subject><subject>Symmetry</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqdkE1LAzEQQIMoWKsH_0HAk8JqPpp096jFLyh40fOSTSaSsknWJCvUX-9KK949zQw83sBD6JySa0okvxHXhNQ1FeIAzShZLitOaX2IZoQQXslG0GN0kvNmOgXjfIY-VtEPPRTAd9D3OBc1rR5UHhN4CAVHi41TPgaDw6h7UAnnwYWMx2AgYYX1ryAPqjg1ObbeQ0lbrAr-ghSxV-8BitPYOujNKTqyqs9wtp9z9PZw_7p6qtYvj8-r23WlF0tWqk51C6trrQ1rGqqkIkwRA8pqsFoQwa0E2lHZLRjvOMjOEGk6YKa2DBop-Rxd7LxDih8j5NJu4pjC9LJlUlLGGKmbibrcUTrFnBPYdkjOq7RtKWl_irai3Red2Ksdm7WbOrkY_gd_xvQHtoOx_Bs9eIca</recordid><startdate>20220509</startdate><enddate>20220509</enddate><creator>Reyes, Raustin</creator><creator>Nakazato, Takaya</creator><creator>Imaike, Nobuaki</creator><creator>Matsuda, Kazuyasu</creator><creator>Tsurumoto, Kazuya</creator><creator>Sekiguchi, Yuhei</creator><creator>Kosaka, Hideo</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3778-7236</orcidid><orcidid>https://orcid.org/0000-0002-4880-1654</orcidid><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid></search><sort><creationdate>20220509</creationdate><title>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</title><author>Reyes, Raustin ; Nakazato, Takaya ; Imaike, Nobuaki ; Matsuda, Kazuyasu ; Tsurumoto, Kazuya ; Sekiguchi, Yuhei ; Kosaka, Hideo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c472t-bab4fc8ccd2991a6a02a0deafcefc5053f6e1b16b423b3e6bd06dbe2d8f2e9663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Applied physics</topic><topic>Competition</topic><topic>Diamonds</topic><topic>Fault tolerance</topic><topic>Hyperfine structure</topic><topic>Information systems</topic><topic>Magnetic fields</topic><topic>Magnetism</topic><topic>Measurement</topic><topic>Microprocessors</topic><topic>Quantum computers</topic><topic>Quantum computing</topic><topic>Quantum entanglement</topic><topic>Quantum phenomena</topic><topic>Qubits (quantum computing)</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reyes, Raustin</creatorcontrib><creatorcontrib>Nakazato, Takaya</creatorcontrib><creatorcontrib>Imaike, Nobuaki</creatorcontrib><creatorcontrib>Matsuda, Kazuyasu</creatorcontrib><creatorcontrib>Tsurumoto, Kazuya</creatorcontrib><creatorcontrib>Sekiguchi, Yuhei</creatorcontrib><creatorcontrib>Kosaka, Hideo</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reyes, Raustin</au><au>Nakazato, Takaya</au><au>Imaike, Nobuaki</au><au>Matsuda, Kazuyasu</au><au>Tsurumoto, Kazuya</au><au>Sekiguchi, Yuhei</au><au>Kosaka, Hideo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field</atitle><jtitle>Applied physics letters</jtitle><date>2022-05-09</date><risdate>2022</risdate><volume>120</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The symmetry of the space where a spin qubit resides plays an essential role in the manipulation of quantum entanglement, which governs the performance of quantum information systems. Application of a magnetic field, which is usually necessary for spin manipulation and readout, inevitably breaks the spatial symmetry to induce competition among quantization axes between internal and external fields, thus limiting the purity of the entanglement. If we could manipulate and readout entanglement under a zero magnetic field, we would be able to avoid the competition among quantization axes to achieve ideally high fidelity. We here demonstrate the complete Bell state measurement, which is a core element of quantum processing, of two carbon nuclear spins in the vicinity of a diamond nitrogen-vacancy center. The demonstration was made possible by holonomic entanglement manipulations based on the geometric phase with a polarized microwave under a zero magnetic field, where the quantization axis is uniquely defined by the hyperfine field. The demonstrated scheme allows high-fidelity entanglement processing even when magnetic fields cannot be applied to the integration of superconducting and spin qubits, thereby paving the way for building fault-tolerant distributed quantum computers and quantum repeater networks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0088155</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-3778-7236</orcidid><orcidid>https://orcid.org/0000-0002-4880-1654</orcidid><orcidid>https://orcid.org/0000-0002-8850-4646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-05, Vol.120 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0088155 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Accuracy Applied physics Competition Diamonds Fault tolerance Hyperfine structure Information systems Magnetic fields Magnetism Measurement Microprocessors Quantum computers Quantum computing Quantum entanglement Quantum phenomena Qubits (quantum computing) Symmetry |
title | Complete Bell state measurement of diamond nuclear spins under a complete spatial symmetry at zero magnetic field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T13%3A12%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Bell%20state%20measurement%20of%20diamond%20nuclear%20spins%20under%20a%20complete%20spatial%20symmetry%20at%20zero%20magnetic%20field&rft.jtitle=Applied%20physics%20letters&rft.au=Reyes,%20Raustin&rft.date=2022-05-09&rft.volume=120&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0088155&rft_dat=%3Cproquest_cross%3E2661222089%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2661222089&rft_id=info:pmid/&rfr_iscdi=true |