Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model
We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–p...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2022-04, Vol.156 (15), p.154116-154116 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154116 |
---|---|
container_issue | 15 |
container_start_page | 154116 |
container_title | The Journal of chemical physics |
container_volume | 156 |
creator | Xie, Hua Xu, Xiaoliang Wang, Linjun Zhuang, Wei |
description | We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems. |
doi_str_mv | 10.1063/5.0085759 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0085759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654279263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</originalsourceid><addsrcrecordid>eNp90EtL7DAYxvEgio6XxfkCh4AbFapvbm2yFPEGggvd1zRNNNI2NWmV-fZmmDln4cJNsvnx5-VB6A-BcwIluxDnAFJUQm2hBQGpiqpUsI0WAJQUqoRyD-2n9A4ApKJ8F-0xwYWislqgl6c5Om0sfgvj6IdX3C4H3XuTsB_waKMPrTc4hc63RZr0ZHGfn-h1l_CXn96wxp0frI740zcxDBmbMI_dKtWH1naHaMdlbI82_wF6vrl-vrorHh5v768uHwrDQE6FLFvFGi3BUCM1a5yRjljNDSitGgHcEC0oaCJdS6mjVFdWO8Y4521DHDtAJ-vsGMPHbNNU9z4Z23V6sGFONS0Fp5WiJcv0-Ad9D3Mc8nErRZWSXJVZna6ViSGlaF09Rt_ruKwJ1KvVa1FvVs_276Y4N71t_8t_M2dwtgbJ-DyiD8MvtW-9hoph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652998496</pqid></control><display><type>article</type><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</creator><creatorcontrib>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</creatorcontrib><description>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0085759</identifier><identifier>PMID: 35459287</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brillouin zones ; Couplings ; Density functional theory ; Energy bands ; Exponential functions ; Hilbert space ; Hot electrons ; Molecular chains ; Perturbation theory ; Phonons ; Physics ; Sampling ; Solid state ; Wave functions ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2022-04, Vol.156 (15), p.154116-154116</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</cites><orcidid>0000-0002-6169-7687 ; 0000-0003-4106-0985 ; 0000-0002-3390-6330 ; 0000-0003-1720-2103 ; s0000000341060985 ; s0000000233906330 ; s0000000261697687 ; s0000000317202103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0085759$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35459287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Linjun</creatorcontrib><creatorcontrib>Zhuang, Wei</creatorcontrib><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</description><subject>Brillouin zones</subject><subject>Couplings</subject><subject>Density functional theory</subject><subject>Energy bands</subject><subject>Exponential functions</subject><subject>Hilbert space</subject><subject>Hot electrons</subject><subject>Molecular chains</subject><subject>Perturbation theory</subject><subject>Phonons</subject><subject>Physics</subject><subject>Sampling</subject><subject>Solid state</subject><subject>Wave functions</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtL7DAYxvEgio6XxfkCh4AbFapvbm2yFPEGggvd1zRNNNI2NWmV-fZmmDln4cJNsvnx5-VB6A-BcwIluxDnAFJUQm2hBQGpiqpUsI0WAJQUqoRyD-2n9A4ApKJ8F-0xwYWislqgl6c5Om0sfgvj6IdX3C4H3XuTsB_waKMPrTc4hc63RZr0ZHGfn-h1l_CXn96wxp0frI740zcxDBmbMI_dKtWH1naHaMdlbI82_wF6vrl-vrorHh5v768uHwrDQE6FLFvFGi3BUCM1a5yRjljNDSitGgHcEC0oaCJdS6mjVFdWO8Y4521DHDtAJ-vsGMPHbNNU9z4Z23V6sGFONS0Fp5WiJcv0-Ad9D3Mc8nErRZWSXJVZna6ViSGlaF09Rt_ruKwJ1KvVa1FvVs_276Y4N71t_8t_M2dwtgbJ-DyiD8MvtW-9hoph</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Xie, Hua</creator><creator>Xu, Xiaoliang</creator><creator>Wang, Linjun</creator><creator>Zhuang, Wei</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6169-7687</orcidid><orcidid>https://orcid.org/0000-0003-4106-0985</orcidid><orcidid>https://orcid.org/0000-0002-3390-6330</orcidid><orcidid>https://orcid.org/0000-0003-1720-2103</orcidid><orcidid>https://orcid.org/s0000000341060985</orcidid><orcidid>https://orcid.org/s0000000233906330</orcidid><orcidid>https://orcid.org/s0000000261697687</orcidid><orcidid>https://orcid.org/s0000000317202103</orcidid></search><sort><creationdate>20220421</creationdate><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><author>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brillouin zones</topic><topic>Couplings</topic><topic>Density functional theory</topic><topic>Energy bands</topic><topic>Exponential functions</topic><topic>Hilbert space</topic><topic>Hot electrons</topic><topic>Molecular chains</topic><topic>Perturbation theory</topic><topic>Phonons</topic><topic>Physics</topic><topic>Sampling</topic><topic>Solid state</topic><topic>Wave functions</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Linjun</creatorcontrib><creatorcontrib>Zhuang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Hua</au><au>Xu, Xiaoliang</au><au>Wang, Linjun</au><au>Zhuang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>156</volume><issue>15</issue><spage>154116</spage><epage>154116</epage><pages>154116-154116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35459287</pmid><doi>10.1063/5.0085759</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6169-7687</orcidid><orcidid>https://orcid.org/0000-0003-4106-0985</orcidid><orcidid>https://orcid.org/0000-0002-3390-6330</orcidid><orcidid>https://orcid.org/0000-0003-1720-2103</orcidid><orcidid>https://orcid.org/s0000000341060985</orcidid><orcidid>https://orcid.org/s0000000233906330</orcidid><orcidid>https://orcid.org/s0000000261697687</orcidid><orcidid>https://orcid.org/s0000000317202103</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2022-04, Vol.156 (15), p.154116-154116 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0085759 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Brillouin zones Couplings Density functional theory Energy bands Exponential functions Hilbert space Hot electrons Molecular chains Perturbation theory Phonons Physics Sampling Solid state Wave functions Wave propagation |
title | Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20hopping%20dynamics%20in%20periodic%20solid-state%20materials%20with%20a%20linear%20vibronic%20coupling%20model&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xie,%20Hua&rft.date=2022-04-21&rft.volume=156&rft.issue=15&rft.spage=154116&rft.epage=154116&rft.pages=154116-154116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0085759&rft_dat=%3Cproquest_cross%3E2654279263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652998496&rft_id=info:pmid/35459287&rfr_iscdi=true |