Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model

We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-04, Vol.156 (15), p.154116-154116
Hauptverfasser: Xie, Hua, Xu, Xiaoliang, Wang, Linjun, Zhuang, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154116
container_issue 15
container_start_page 154116
container_title The Journal of chemical physics
container_volume 156
creator Xie, Hua
Xu, Xiaoliang
Wang, Linjun
Zhuang, Wei
description We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.
doi_str_mv 10.1063/5.0085759
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0085759</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2654279263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</originalsourceid><addsrcrecordid>eNp90EtL7DAYxvEgio6XxfkCh4AbFapvbm2yFPEGggvd1zRNNNI2NWmV-fZmmDln4cJNsvnx5-VB6A-BcwIluxDnAFJUQm2hBQGpiqpUsI0WAJQUqoRyD-2n9A4ApKJ8F-0xwYWislqgl6c5Om0sfgvj6IdX3C4H3XuTsB_waKMPrTc4hc63RZr0ZHGfn-h1l_CXn96wxp0frI740zcxDBmbMI_dKtWH1naHaMdlbI82_wF6vrl-vrorHh5v768uHwrDQE6FLFvFGi3BUCM1a5yRjljNDSitGgHcEC0oaCJdS6mjVFdWO8Y4521DHDtAJ-vsGMPHbNNU9z4Z23V6sGFONS0Fp5WiJcv0-Ad9D3Mc8nErRZWSXJVZna6ViSGlaF09Rt_ruKwJ1KvVa1FvVs_276Y4N71t_8t_M2dwtgbJ-DyiD8MvtW-9hoph</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652998496</pqid></control><display><type>article</type><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</creator><creatorcontrib>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</creatorcontrib><description>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0085759</identifier><identifier>PMID: 35459287</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Brillouin zones ; Couplings ; Density functional theory ; Energy bands ; Exponential functions ; Hilbert space ; Hot electrons ; Molecular chains ; Perturbation theory ; Phonons ; Physics ; Sampling ; Solid state ; Wave functions ; Wave propagation</subject><ispartof>The Journal of chemical physics, 2022-04, Vol.156 (15), p.154116-154116</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</cites><orcidid>0000-0002-6169-7687 ; 0000-0003-4106-0985 ; 0000-0002-3390-6330 ; 0000-0003-1720-2103 ; s0000000341060985 ; s0000000233906330 ; s0000000261697687 ; s0000000317202103</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0085759$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35459287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Linjun</creatorcontrib><creatorcontrib>Zhuang, Wei</creatorcontrib><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><title>The Journal of chemical physics</title><addtitle>J Chem Phys</addtitle><description>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</description><subject>Brillouin zones</subject><subject>Couplings</subject><subject>Density functional theory</subject><subject>Energy bands</subject><subject>Exponential functions</subject><subject>Hilbert space</subject><subject>Hot electrons</subject><subject>Molecular chains</subject><subject>Perturbation theory</subject><subject>Phonons</subject><subject>Physics</subject><subject>Sampling</subject><subject>Solid state</subject><subject>Wave functions</subject><subject>Wave propagation</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtL7DAYxvEgio6XxfkCh4AbFapvbm2yFPEGggvd1zRNNNI2NWmV-fZmmDln4cJNsvnx5-VB6A-BcwIluxDnAFJUQm2hBQGpiqpUsI0WAJQUqoRyD-2n9A4ApKJ8F-0xwYWislqgl6c5Om0sfgvj6IdX3C4H3XuTsB_waKMPrTc4hc63RZr0ZHGfn-h1l_CXn96wxp0frI740zcxDBmbMI_dKtWH1naHaMdlbI82_wF6vrl-vrorHh5v768uHwrDQE6FLFvFGi3BUCM1a5yRjljNDSitGgHcEC0oaCJdS6mjVFdWO8Y4521DHDtAJ-vsGMPHbNNU9z4Z23V6sGFONS0Fp5WiJcv0-Ad9D3Mc8nErRZWSXJVZna6ViSGlaF09Rt_ruKwJ1KvVa1FvVs_276Y4N71t_8t_M2dwtgbJ-DyiD8MvtW-9hoph</recordid><startdate>20220421</startdate><enddate>20220421</enddate><creator>Xie, Hua</creator><creator>Xu, Xiaoliang</creator><creator>Wang, Linjun</creator><creator>Zhuang, Wei</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6169-7687</orcidid><orcidid>https://orcid.org/0000-0003-4106-0985</orcidid><orcidid>https://orcid.org/0000-0002-3390-6330</orcidid><orcidid>https://orcid.org/0000-0003-1720-2103</orcidid><orcidid>https://orcid.org/s0000000341060985</orcidid><orcidid>https://orcid.org/s0000000233906330</orcidid><orcidid>https://orcid.org/s0000000261697687</orcidid><orcidid>https://orcid.org/s0000000317202103</orcidid></search><sort><creationdate>20220421</creationdate><title>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</title><author>Xie, Hua ; Xu, Xiaoliang ; Wang, Linjun ; Zhuang, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c308t-86d93ba80c2c8a3bfc8f1ea4c09a9b504c1a520a18fd22f22a7eaf33444db1f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Brillouin zones</topic><topic>Couplings</topic><topic>Density functional theory</topic><topic>Energy bands</topic><topic>Exponential functions</topic><topic>Hilbert space</topic><topic>Hot electrons</topic><topic>Molecular chains</topic><topic>Perturbation theory</topic><topic>Phonons</topic><topic>Physics</topic><topic>Sampling</topic><topic>Solid state</topic><topic>Wave functions</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Hua</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Linjun</creatorcontrib><creatorcontrib>Zhuang, Wei</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Hua</au><au>Xu, Xiaoliang</au><au>Wang, Linjun</au><au>Zhuang, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model</atitle><jtitle>The Journal of chemical physics</jtitle><addtitle>J Chem Phys</addtitle><date>2022-04-21</date><risdate>2022</risdate><volume>156</volume><issue>15</issue><spage>154116</spage><epage>154116</epage><pages>154116-154116</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>We report a surface hopping approach in which the implemented linear vibronic coupling Hamiltonian is constructed and the electronic wavefunction is propagated in the reciprocal space. The parameters of the linear vibronic coupling model, including onsite energies, phonon frequencies, and electron–phonon couplings, are calculated with density-functional theory and density-functional perturbation theory and interpolated in fine sampling points of the Brillouin zone with maximally localized Wannier functions. Using this approach, we studied the relaxation dynamics of the photo-excited hot carrier in a one-dimensional periodic carbon chain. The results show that the completeness of the number of Hilbert space k points and the number of phonon q points plays an important role in the hot carrier relaxation processes. By calculating the relaxation times of hot carriers under different reciprocal space sampling and extrapolating with the stretched–compressed exponential function, the relaxation times of hot electrons and holes in the quasi-continuous energy band are obtained. By considering the feedback effect in the hopping processes and analyzing the time-dependent phonon energy in different normal modes, we found that the long-wave longitudinal optical phonons play a major role in the relaxation dynamics of hot electrons and holes. We, therefore, provided herein an efficient and accurate approach for modeling the photophysical processes in periodic solid-state material systems.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35459287</pmid><doi>10.1063/5.0085759</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-6169-7687</orcidid><orcidid>https://orcid.org/0000-0003-4106-0985</orcidid><orcidid>https://orcid.org/0000-0002-3390-6330</orcidid><orcidid>https://orcid.org/0000-0003-1720-2103</orcidid><orcidid>https://orcid.org/s0000000341060985</orcidid><orcidid>https://orcid.org/s0000000233906330</orcidid><orcidid>https://orcid.org/s0000000261697687</orcidid><orcidid>https://orcid.org/s0000000317202103</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-04, Vol.156 (15), p.154116-154116
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0085759
source AIP Journals Complete; Alma/SFX Local Collection
subjects Brillouin zones
Couplings
Density functional theory
Energy bands
Exponential functions
Hilbert space
Hot electrons
Molecular chains
Perturbation theory
Phonons
Physics
Sampling
Solid state
Wave functions
Wave propagation
title Surface hopping dynamics in periodic solid-state materials with a linear vibronic coupling model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T17%3A29%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Surface%20hopping%20dynamics%20in%20periodic%20solid-state%20materials%20with%20a%20linear%20vibronic%20coupling%20model&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Xie,%20Hua&rft.date=2022-04-21&rft.volume=156&rft.issue=15&rft.spage=154116&rft.epage=154116&rft.pages=154116-154116&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0085759&rft_dat=%3Cproquest_cross%3E2654279263%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652998496&rft_id=info:pmid/35459287&rfr_iscdi=true