Ytterbium oxide electron injection interface in organic light-emitting diode
The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TO...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-03, Vol.120 (12) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Man, Jia-Xiu Hu, Jun-Tao Wang, Deng-Ke He, Shou-Jie Lu, Zheng-Hong |
description | The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier. |
doi_str_mv | 10.1063/5.0084140 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0084140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641648267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elha5JJNrtHKVaFgpdePIXdfNQs7aYmqei_N7VFD4KnvIFnZphB6JLgCcEV3PIJxjUjDB-hEcFClEBIfYxGGGMoq4aTU3QWY5-_nAKM0PwlJRM6t10X_sNpU5iVUSn4oXBDn5P7TpnYVpmcCh-W7eBUsXLL11SatUvJDctCO6_NOTqx7Sqai8M7RovZ_WL6WM6fH56md_NSARW5SHUNVwLXRFvONDMd0EbQCnTbccWNbYByapnlCqCpO9V0zIqac27BaAZjdLVvuwn-bWtikr3fhiFPlLRipGI1rURW13ulgo8xGCs3wa3b8CkJlrtbSS4Pt8r2Zm-jcqndLf2D3334hXKj7X_4b-cvyDd37Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641648267</pqid></control><display><type>article</type><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</creator><creatorcontrib>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</creatorcontrib><description>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0084140</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current efficiency ; Efficiency ; Electron transport ; Metal oxides ; Molecular orbitals ; Organic light emitting diodes ; Photoelectric emission ; Power efficiency ; Work functions ; Ytterbium</subject><ispartof>Applied physics letters, 2022-03, Vol.120 (12)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</citedby><cites>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</cites><orcidid>0000-0003-2050-0822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0084140$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Man, Jia-Xiu</creatorcontrib><creatorcontrib>Hu, Jun-Tao</creatorcontrib><creatorcontrib>Wang, Deng-Ke</creatorcontrib><creatorcontrib>He, Shou-Jie</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><title>Applied physics letters</title><description>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</description><subject>Applied physics</subject><subject>Current efficiency</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Metal oxides</subject><subject>Molecular orbitals</subject><subject>Organic light emitting diodes</subject><subject>Photoelectric emission</subject><subject>Power efficiency</subject><subject>Work functions</subject><subject>Ytterbium</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elha5JJNrtHKVaFgpdePIXdfNQs7aYmqei_N7VFD4KnvIFnZphB6JLgCcEV3PIJxjUjDB-hEcFClEBIfYxGGGMoq4aTU3QWY5-_nAKM0PwlJRM6t10X_sNpU5iVUSn4oXBDn5P7TpnYVpmcCh-W7eBUsXLL11SatUvJDctCO6_NOTqx7Sqai8M7RovZ_WL6WM6fH56md_NSARW5SHUNVwLXRFvONDMd0EbQCnTbccWNbYByapnlCqCpO9V0zIqac27BaAZjdLVvuwn-bWtikr3fhiFPlLRipGI1rURW13ulgo8xGCs3wa3b8CkJlrtbSS4Pt8r2Zm-jcqndLf2D3334hXKj7X_4b-cvyDd37Q</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Man, Jia-Xiu</creator><creator>Hu, Jun-Tao</creator><creator>Wang, Deng-Ke</creator><creator>He, Shou-Jie</creator><creator>Lu, Zheng-Hong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2050-0822</orcidid></search><sort><creationdate>20220321</creationdate><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><author>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Current efficiency</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Metal oxides</topic><topic>Molecular orbitals</topic><topic>Organic light emitting diodes</topic><topic>Photoelectric emission</topic><topic>Power efficiency</topic><topic>Work functions</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Jia-Xiu</creatorcontrib><creatorcontrib>Hu, Jun-Tao</creatorcontrib><creatorcontrib>Wang, Deng-Ke</creatorcontrib><creatorcontrib>He, Shou-Jie</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Jia-Xiu</au><au>Hu, Jun-Tao</au><au>Wang, Deng-Ke</au><au>He, Shou-Jie</au><au>Lu, Zheng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ytterbium oxide electron injection interface in organic light-emitting diode</atitle><jtitle>Applied physics letters</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>120</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0084140</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2050-0822</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-03, Vol.120 (12) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0084140 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Current efficiency Efficiency Electron transport Metal oxides Molecular orbitals Organic light emitting diodes Photoelectric emission Power efficiency Work functions Ytterbium |
title | Ytterbium oxide electron injection interface in organic light-emitting diode |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ytterbium%20oxide%20electron%20injection%20interface%20in%20organic%20light-emitting%20diode&rft.jtitle=Applied%20physics%20letters&rft.au=Man,%20Jia-Xiu&rft.date=2022-03-21&rft.volume=120&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0084140&rft_dat=%3Cproquest_cross%3E2641648267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641648267&rft_id=info:pmid/&rfr_iscdi=true |