Ytterbium oxide electron injection interface in organic light-emitting diode

The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TO...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-03, Vol.120 (12)
Hauptverfasser: Man, Jia-Xiu, Hu, Jun-Tao, Wang, Deng-Ke, He, Shou-Jie, Lu, Zheng-Hong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Applied physics letters
container_volume 120
creator Man, Jia-Xiu
Hu, Jun-Tao
Wang, Deng-Ke
He, Shou-Jie
Lu, Zheng-Hong
description The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.
doi_str_mv 10.1063/5.0084140
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0084140</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2641648267</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtbqwX-w4Elha5JJNrtHKVaFgpdePIXdfNQs7aYmqei_N7VFD4KnvIFnZphB6JLgCcEV3PIJxjUjDB-hEcFClEBIfYxGGGMoq4aTU3QWY5-_nAKM0PwlJRM6t10X_sNpU5iVUSn4oXBDn5P7TpnYVpmcCh-W7eBUsXLL11SatUvJDctCO6_NOTqx7Sqai8M7RovZ_WL6WM6fH56md_NSARW5SHUNVwLXRFvONDMd0EbQCnTbccWNbYByapnlCqCpO9V0zIqac27BaAZjdLVvuwn-bWtikr3fhiFPlLRipGI1rURW13ulgo8xGCs3wa3b8CkJlrtbSS4Pt8r2Zm-jcqndLf2D3334hXKj7X_4b-cvyDd37Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2641648267</pqid></control><display><type>article</type><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</creator><creatorcontrib>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</creatorcontrib><description>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0084140</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Current efficiency ; Efficiency ; Electron transport ; Metal oxides ; Molecular orbitals ; Organic light emitting diodes ; Photoelectric emission ; Power efficiency ; Work functions ; Ytterbium</subject><ispartof>Applied physics letters, 2022-03, Vol.120 (12)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</citedby><cites>FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</cites><orcidid>0000-0003-2050-0822</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0084140$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Man, Jia-Xiu</creatorcontrib><creatorcontrib>Hu, Jun-Tao</creatorcontrib><creatorcontrib>Wang, Deng-Ke</creatorcontrib><creatorcontrib>He, Shou-Jie</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><title>Applied physics letters</title><description>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</description><subject>Applied physics</subject><subject>Current efficiency</subject><subject>Efficiency</subject><subject>Electron transport</subject><subject>Metal oxides</subject><subject>Molecular orbitals</subject><subject>Organic light emitting diodes</subject><subject>Photoelectric emission</subject><subject>Power efficiency</subject><subject>Work functions</subject><subject>Ytterbium</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtbqwX-w4Elha5JJNrtHKVaFgpdePIXdfNQs7aYmqei_N7VFD4KnvIFnZphB6JLgCcEV3PIJxjUjDB-hEcFClEBIfYxGGGMoq4aTU3QWY5-_nAKM0PwlJRM6t10X_sNpU5iVUSn4oXBDn5P7TpnYVpmcCh-W7eBUsXLL11SatUvJDctCO6_NOTqx7Sqai8M7RovZ_WL6WM6fH56md_NSARW5SHUNVwLXRFvONDMd0EbQCnTbccWNbYByapnlCqCpO9V0zIqac27BaAZjdLVvuwn-bWtikr3fhiFPlLRipGI1rURW13ulgo8xGCs3wa3b8CkJlrtbSS4Pt8r2Zm-jcqndLf2D3334hXKj7X_4b-cvyDd37Q</recordid><startdate>20220321</startdate><enddate>20220321</enddate><creator>Man, Jia-Xiu</creator><creator>Hu, Jun-Tao</creator><creator>Wang, Deng-Ke</creator><creator>He, Shou-Jie</creator><creator>Lu, Zheng-Hong</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2050-0822</orcidid></search><sort><creationdate>20220321</creationdate><title>Ytterbium oxide electron injection interface in organic light-emitting diode</title><author>Man, Jia-Xiu ; Hu, Jun-Tao ; Wang, Deng-Ke ; He, Shou-Jie ; Lu, Zheng-Hong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-ecb95c7081df54d4eb3297263dab5c5ef93252f4f5c3398bc9b4f78555f3ed43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Current efficiency</topic><topic>Efficiency</topic><topic>Electron transport</topic><topic>Metal oxides</topic><topic>Molecular orbitals</topic><topic>Organic light emitting diodes</topic><topic>Photoelectric emission</topic><topic>Power efficiency</topic><topic>Work functions</topic><topic>Ytterbium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Man, Jia-Xiu</creatorcontrib><creatorcontrib>Hu, Jun-Tao</creatorcontrib><creatorcontrib>Wang, Deng-Ke</creatorcontrib><creatorcontrib>He, Shou-Jie</creatorcontrib><creatorcontrib>Lu, Zheng-Hong</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Man, Jia-Xiu</au><au>Hu, Jun-Tao</au><au>Wang, Deng-Ke</au><au>He, Shou-Jie</au><au>Lu, Zheng-Hong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ytterbium oxide electron injection interface in organic light-emitting diode</atitle><jtitle>Applied physics letters</jtitle><date>2022-03-21</date><risdate>2022</risdate><volume>120</volume><issue>12</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The ytterbium oxide (Yb3+) is found to have an extremely low work function of 2.42 eV, which is even lower than that of its metallic form Yb0 (2.64 eV). The stability of oxides makes Yb3+ an ideal electron injection material for both top-emitting and bottom-emitting organic light-emitting diodes (TOLED and BOLED). The device test data indeed show that at 1000 nit luminance, the TOLED has a 94 cd/A current efficiency and 70 lm/W power efficiency, and BOLED has a 76 cd/A and 60 lm/W efficiency, respectively. X-ray and ultraviolet photoemission spectroscopical studies indicate that the Fermi level of the metal oxide is pinned to the lowest unoccupied molecular orbital of the electron transport layer, leading to the formation of a cathode interface with an ultra-low electron injection barrier.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0084140</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-2050-0822</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-03, Vol.120 (12)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0084140
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Current efficiency
Efficiency
Electron transport
Metal oxides
Molecular orbitals
Organic light emitting diodes
Photoelectric emission
Power efficiency
Work functions
Ytterbium
title Ytterbium oxide electron injection interface in organic light-emitting diode
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T02%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ytterbium%20oxide%20electron%20injection%20interface%20in%20organic%20light-emitting%20diode&rft.jtitle=Applied%20physics%20letters&rft.au=Man,%20Jia-Xiu&rft.date=2022-03-21&rft.volume=120&rft.issue=12&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0084140&rft_dat=%3Cproquest_cross%3E2641648267%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2641648267&rft_id=info:pmid/&rfr_iscdi=true