A qPlus-based scanning probe microscope compatible with optical measurements
We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high...
Gespeichert in:
Veröffentlicht in: | Review of scientific instruments 2022-04, Vol.93 (4), p.043701-043701 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 043701 |
---|---|
container_issue | 4 |
container_start_page | 043701 |
container_title | Review of scientific instruments |
container_volume | 93 |
creator | Cheng, Bowei Wu, Da Bian, Ke Tian, Ye Guo, Chaoyu Liu, Kaihui Jiang, Ying |
description | We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments. |
doi_str_mv | 10.1063/5.0082369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0082369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658228908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLk6bHMXyDgR70HPKqHW3TNa3itzdjc4KCzyWXH_88zx-AUwSnCDJyTacQckxYsQfGCPIizRkm-2AMIclSlmd8BI5CWMI4FKFDMCI04wXnbAwWs2T1VA0hVTJYkwQtm6ZsXpO288omdak7H7RvbaJ93cq-VJVNPsr-LfFtX2pZJbWVYehsbZs-HIMDJ6tgT7bvBLzc3jzP79PF493DfLZINUGkTykquDKISIyJotgZkxNMqMMKckUlsY4rizEyOWVSMUlM7mTOmaMEOWUYmYCLTW7ccjXY0Iu6DNpWlWysH4LAjHKMeQF5pOe_6NIPXRO3iyqjRcEgp1FdbtT63NBZJ9qurGX3KRAU64oFFduKoz3bJg6qtmYnvzuN4GoDgi77WJlvdubddz9JojXuP_z36y_zvpG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645996085</pqid></control><display><type>article</type><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</creator><creatorcontrib>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</creatorcontrib><description>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0082369</identifier><identifier>PMID: 35489886</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Background noise ; Electric noise ; Electroluminescence ; Electron tunneling ; Excitation ; Hydrogen bonding ; Low temperature ; Microscopes ; Numerical aperture ; Optical measurement ; Q factors ; Scanners ; Scanning probe microscopes ; Scientific apparatus & instruments ; Thermal stability ; Ultrahigh vacuum</subject><ispartof>Review of scientific instruments, 2022-04, Vol.93 (4), p.043701-043701</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</citedby><cites>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</cites><orcidid>0000-0002-2969-2448 ; 0000-0001-8234-4226 ; 0000-0002-8781-2495 ; 0000-0002-6887-5503 ; 0000-0001-5196-1766 ; 0000-0002-3529-7006 ; s0000000268875503 ; s0000000229692448 ; s0000000151961766 ; s0000000287812495 ; s0000000182344226 ; s0000000235297006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0082369$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35489886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Bowei</creatorcontrib><creatorcontrib>Wu, Da</creatorcontrib><creatorcontrib>Bian, Ke</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guo, Chaoyu</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Background noise</subject><subject>Electric noise</subject><subject>Electroluminescence</subject><subject>Electron tunneling</subject><subject>Excitation</subject><subject>Hydrogen bonding</subject><subject>Low temperature</subject><subject>Microscopes</subject><subject>Numerical aperture</subject><subject>Optical measurement</subject><subject>Q factors</subject><subject>Scanners</subject><subject>Scanning probe microscopes</subject><subject>Scientific apparatus & instruments</subject><subject>Thermal stability</subject><subject>Ultrahigh vacuum</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLk6bHMXyDgR70HPKqHW3TNa3itzdjc4KCzyWXH_88zx-AUwSnCDJyTacQckxYsQfGCPIizRkm-2AMIclSlmd8BI5CWMI4FKFDMCI04wXnbAwWs2T1VA0hVTJYkwQtm6ZsXpO288omdak7H7RvbaJ93cq-VJVNPsr-LfFtX2pZJbWVYehsbZs-HIMDJ6tgT7bvBLzc3jzP79PF493DfLZINUGkTykquDKISIyJotgZkxNMqMMKckUlsY4rizEyOWVSMUlM7mTOmaMEOWUYmYCLTW7ccjXY0Iu6DNpWlWysH4LAjHKMeQF5pOe_6NIPXRO3iyqjRcEgp1FdbtT63NBZJ9qurGX3KRAU64oFFduKoz3bJg6qtmYnvzuN4GoDgi77WJlvdubddz9JojXuP_z36y_zvpG8</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cheng, Bowei</creator><creator>Wu, Da</creator><creator>Bian, Ke</creator><creator>Tian, Ye</creator><creator>Guo, Chaoyu</creator><creator>Liu, Kaihui</creator><creator>Jiang, Ying</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2969-2448</orcidid><orcidid>https://orcid.org/0000-0001-8234-4226</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0001-5196-1766</orcidid><orcidid>https://orcid.org/0000-0002-3529-7006</orcidid><orcidid>https://orcid.org/s0000000268875503</orcidid><orcidid>https://orcid.org/s0000000229692448</orcidid><orcidid>https://orcid.org/s0000000151961766</orcidid><orcidid>https://orcid.org/s0000000287812495</orcidid><orcidid>https://orcid.org/s0000000182344226</orcidid><orcidid>https://orcid.org/s0000000235297006</orcidid></search><sort><creationdate>20220401</creationdate><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><author>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Background noise</topic><topic>Electric noise</topic><topic>Electroluminescence</topic><topic>Electron tunneling</topic><topic>Excitation</topic><topic>Hydrogen bonding</topic><topic>Low temperature</topic><topic>Microscopes</topic><topic>Numerical aperture</topic><topic>Optical measurement</topic><topic>Q factors</topic><topic>Scanners</topic><topic>Scanning probe microscopes</topic><topic>Scientific apparatus & instruments</topic><topic>Thermal stability</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Bowei</creatorcontrib><creatorcontrib>Wu, Da</creatorcontrib><creatorcontrib>Bian, Ke</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guo, Chaoyu</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Bowei</au><au>Wu, Da</au><au>Bian, Ke</au><au>Tian, Ye</au><au>Guo, Chaoyu</au><au>Liu, Kaihui</au><au>Jiang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A qPlus-based scanning probe microscope compatible with optical measurements</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>93</volume><issue>4</issue><spage>043701</spage><epage>043701</epage><pages>043701-043701</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35489886</pmid><doi>10.1063/5.0082369</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2969-2448</orcidid><orcidid>https://orcid.org/0000-0001-8234-4226</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0001-5196-1766</orcidid><orcidid>https://orcid.org/0000-0002-3529-7006</orcidid><orcidid>https://orcid.org/s0000000268875503</orcidid><orcidid>https://orcid.org/s0000000229692448</orcidid><orcidid>https://orcid.org/s0000000151961766</orcidid><orcidid>https://orcid.org/s0000000287812495</orcidid><orcidid>https://orcid.org/s0000000182344226</orcidid><orcidid>https://orcid.org/s0000000235297006</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0034-6748 |
ispartof | Review of scientific instruments, 2022-04, Vol.93 (4), p.043701-043701 |
issn | 0034-6748 1089-7623 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0082369 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Atomic force microscopes Atomic force microscopy Background noise Electric noise Electroluminescence Electron tunneling Excitation Hydrogen bonding Low temperature Microscopes Numerical aperture Optical measurement Q factors Scanners Scanning probe microscopes Scientific apparatus & instruments Thermal stability Ultrahigh vacuum |
title | A qPlus-based scanning probe microscope compatible with optical measurements |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20qPlus-based%20scanning%20probe%20microscope%20compatible%20with%20optical%20measurements&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Cheng,%20Bowei&rft.date=2022-04-01&rft.volume=93&rft.issue=4&rft.spage=043701&rft.epage=043701&rft.pages=043701-043701&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0082369&rft_dat=%3Cproquest_cross%3E2658228908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645996085&rft_id=info:pmid/35489886&rfr_iscdi=true |