A qPlus-based scanning probe microscope compatible with optical measurements

We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2022-04, Vol.93 (4), p.043701-043701
Hauptverfasser: Cheng, Bowei, Wu, Da, Bian, Ke, Tian, Ye, Guo, Chaoyu, Liu, Kaihui, Jiang, Ying
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 043701
container_issue 4
container_start_page 043701
container_title Review of scientific instruments
container_volume 93
creator Cheng, Bowei
Wu, Da
Bian, Ke
Tian, Ye
Guo, Chaoyu
Liu, Kaihui
Jiang, Ying
description We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.
doi_str_mv 10.1063/5.0082369
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0082369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2658228908</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</originalsourceid><addsrcrecordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLk6bHMXyDgR70HPKqHW3TNa3itzdjc4KCzyWXH_88zx-AUwSnCDJyTacQckxYsQfGCPIizRkm-2AMIclSlmd8BI5CWMI4FKFDMCI04wXnbAwWs2T1VA0hVTJYkwQtm6ZsXpO288omdak7H7RvbaJ93cq-VJVNPsr-LfFtX2pZJbWVYehsbZs-HIMDJ6tgT7bvBLzc3jzP79PF493DfLZINUGkTykquDKISIyJotgZkxNMqMMKckUlsY4rizEyOWVSMUlM7mTOmaMEOWUYmYCLTW7ccjXY0Iu6DNpWlWysH4LAjHKMeQF5pOe_6NIPXRO3iyqjRcEgp1FdbtT63NBZJ9qurGX3KRAU64oFFduKoz3bJg6qtmYnvzuN4GoDgi77WJlvdubddz9JojXuP_z36y_zvpG8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645996085</pqid></control><display><type>article</type><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</creator><creatorcontrib>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</creatorcontrib><description>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</description><identifier>ISSN: 0034-6748</identifier><identifier>EISSN: 1089-7623</identifier><identifier>DOI: 10.1063/5.0082369</identifier><identifier>PMID: 35489886</identifier><identifier>CODEN: RSINAK</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Atomic force microscopes ; Atomic force microscopy ; Background noise ; Electric noise ; Electroluminescence ; Electron tunneling ; Excitation ; Hydrogen bonding ; Low temperature ; Microscopes ; Numerical aperture ; Optical measurement ; Q factors ; Scanners ; Scanning probe microscopes ; Scientific apparatus &amp; instruments ; Thermal stability ; Ultrahigh vacuum</subject><ispartof>Review of scientific instruments, 2022-04, Vol.93 (4), p.043701-043701</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</citedby><cites>FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</cites><orcidid>0000-0002-2969-2448 ; 0000-0001-8234-4226 ; 0000-0002-8781-2495 ; 0000-0002-6887-5503 ; 0000-0001-5196-1766 ; 0000-0002-3529-7006 ; s0000000268875503 ; s0000000229692448 ; s0000000151961766 ; s0000000287812495 ; s0000000182344226 ; s0000000235297006</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/rsi/article-lookup/doi/10.1063/5.0082369$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35489886$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheng, Bowei</creatorcontrib><creatorcontrib>Wu, Da</creatorcontrib><creatorcontrib>Bian, Ke</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guo, Chaoyu</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><title>Review of scientific instruments</title><addtitle>Rev Sci Instrum</addtitle><description>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</description><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Background noise</subject><subject>Electric noise</subject><subject>Electroluminescence</subject><subject>Electron tunneling</subject><subject>Excitation</subject><subject>Hydrogen bonding</subject><subject>Low temperature</subject><subject>Microscopes</subject><subject>Numerical aperture</subject><subject>Optical measurement</subject><subject>Q factors</subject><subject>Scanners</subject><subject>Scanning probe microscopes</subject><subject>Scientific apparatus &amp; instruments</subject><subject>Thermal stability</subject><subject>Ultrahigh vacuum</subject><issn>0034-6748</issn><issn>1089-7623</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LwzAYB_AgipvTg19ACl5U6MxLk6bHMXyDgR70HPKqHW3TNa3itzdjc4KCzyWXH_88zx-AUwSnCDJyTacQckxYsQfGCPIizRkm-2AMIclSlmd8BI5CWMI4FKFDMCI04wXnbAwWs2T1VA0hVTJYkwQtm6ZsXpO288omdak7H7RvbaJ93cq-VJVNPsr-LfFtX2pZJbWVYehsbZs-HIMDJ6tgT7bvBLzc3jzP79PF493DfLZINUGkTykquDKISIyJotgZkxNMqMMKckUlsY4rizEyOWVSMUlM7mTOmaMEOWUYmYCLTW7ccjXY0Iu6DNpWlWysH4LAjHKMeQF5pOe_6NIPXRO3iyqjRcEgp1FdbtT63NBZJ9qurGX3KRAU64oFFduKoz3bJg6qtmYnvzuN4GoDgi77WJlvdubddz9JojXuP_z36y_zvpG8</recordid><startdate>20220401</startdate><enddate>20220401</enddate><creator>Cheng, Bowei</creator><creator>Wu, Da</creator><creator>Bian, Ke</creator><creator>Tian, Ye</creator><creator>Guo, Chaoyu</creator><creator>Liu, Kaihui</creator><creator>Jiang, Ying</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2969-2448</orcidid><orcidid>https://orcid.org/0000-0001-8234-4226</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0001-5196-1766</orcidid><orcidid>https://orcid.org/0000-0002-3529-7006</orcidid><orcidid>https://orcid.org/s0000000268875503</orcidid><orcidid>https://orcid.org/s0000000229692448</orcidid><orcidid>https://orcid.org/s0000000151961766</orcidid><orcidid>https://orcid.org/s0000000287812495</orcidid><orcidid>https://orcid.org/s0000000182344226</orcidid><orcidid>https://orcid.org/s0000000235297006</orcidid></search><sort><creationdate>20220401</creationdate><title>A qPlus-based scanning probe microscope compatible with optical measurements</title><author>Cheng, Bowei ; Wu, Da ; Bian, Ke ; Tian, Ye ; Guo, Chaoyu ; Liu, Kaihui ; Jiang, Ying</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-5198bd13a223b52fdd73235f2b08b5a3ef8be221d756ab6a3d7fa786f531fbd63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Background noise</topic><topic>Electric noise</topic><topic>Electroluminescence</topic><topic>Electron tunneling</topic><topic>Excitation</topic><topic>Hydrogen bonding</topic><topic>Low temperature</topic><topic>Microscopes</topic><topic>Numerical aperture</topic><topic>Optical measurement</topic><topic>Q factors</topic><topic>Scanners</topic><topic>Scanning probe microscopes</topic><topic>Scientific apparatus &amp; instruments</topic><topic>Thermal stability</topic><topic>Ultrahigh vacuum</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Bowei</creatorcontrib><creatorcontrib>Wu, Da</creatorcontrib><creatorcontrib>Bian, Ke</creatorcontrib><creatorcontrib>Tian, Ye</creatorcontrib><creatorcontrib>Guo, Chaoyu</creatorcontrib><creatorcontrib>Liu, Kaihui</creatorcontrib><creatorcontrib>Jiang, Ying</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Review of scientific instruments</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheng, Bowei</au><au>Wu, Da</au><au>Bian, Ke</au><au>Tian, Ye</au><au>Guo, Chaoyu</au><au>Liu, Kaihui</au><au>Jiang, Ying</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A qPlus-based scanning probe microscope compatible with optical measurements</atitle><jtitle>Review of scientific instruments</jtitle><addtitle>Rev Sci Instrum</addtitle><date>2022-04-01</date><risdate>2022</risdate><volume>93</volume><issue>4</issue><spage>043701</spage><epage>043701</epage><pages>043701-043701</pages><issn>0034-6748</issn><eissn>1089-7623</eissn><coden>RSINAK</coden><abstract>We design and develop a scanning probe microscope (SPM) system based on the qPlus sensor for atomic-scale optical experiments. The microscope operates under ultrahigh vacuum and low temperature (6.2 K). In order to obtain high efficiency of light excitation and collection, two front lenses with high numerical apertures (N.A. = 0.38) driven by compact nano-positioners are directly integrated on the scanner head without degrading its mechanical and thermal stability. The electric noise floor of the background current is 5 fA/Hz1/2, and the maximum vibrational noise of the tip height is below 200 fm/Hz1/2. The drift of the tip–sample spacing is smaller than 0.1 pm/min. Such a rigid scanner head yields small background noise (oscillation amplitude of ∼2 pm without excitation) and high quality factor (Q factor up to 140 000) for the qPlus sensor. Atomic-resolution imaging and inelastic electron tunneling spectroscopy are obtained under the scanning tunneling microscope mode on the Au(111) surface. The hydrogen-bonding structure of two-dimensional (2D) ice on the Au(111) surface is clearly resolved under the atomic force microscope (AFM) mode with a CO-terminated tip. Finally, the electroluminescence spectrum from a plasmonic AFM tip is demonstrated, which paves the way for future photon-assisted SPM experiments.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>35489886</pmid><doi>10.1063/5.0082369</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2969-2448</orcidid><orcidid>https://orcid.org/0000-0001-8234-4226</orcidid><orcidid>https://orcid.org/0000-0002-8781-2495</orcidid><orcidid>https://orcid.org/0000-0002-6887-5503</orcidid><orcidid>https://orcid.org/0000-0001-5196-1766</orcidid><orcidid>https://orcid.org/0000-0002-3529-7006</orcidid><orcidid>https://orcid.org/s0000000268875503</orcidid><orcidid>https://orcid.org/s0000000229692448</orcidid><orcidid>https://orcid.org/s0000000151961766</orcidid><orcidid>https://orcid.org/s0000000287812495</orcidid><orcidid>https://orcid.org/s0000000182344226</orcidid><orcidid>https://orcid.org/s0000000235297006</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0034-6748
ispartof Review of scientific instruments, 2022-04, Vol.93 (4), p.043701-043701
issn 0034-6748
1089-7623
language eng
recordid cdi_crossref_primary_10_1063_5_0082369
source AIP Journals Complete; Alma/SFX Local Collection
subjects Atomic force microscopes
Atomic force microscopy
Background noise
Electric noise
Electroluminescence
Electron tunneling
Excitation
Hydrogen bonding
Low temperature
Microscopes
Numerical aperture
Optical measurement
Q factors
Scanners
Scanning probe microscopes
Scientific apparatus & instruments
Thermal stability
Ultrahigh vacuum
title A qPlus-based scanning probe microscope compatible with optical measurements
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A06%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20qPlus-based%20scanning%20probe%20microscope%20compatible%20with%20optical%20measurements&rft.jtitle=Review%20of%20scientific%20instruments&rft.au=Cheng,%20Bowei&rft.date=2022-04-01&rft.volume=93&rft.issue=4&rft.spage=043701&rft.epage=043701&rft.pages=043701-043701&rft.issn=0034-6748&rft.eissn=1089-7623&rft.coden=RSINAK&rft_id=info:doi/10.1063/5.0082369&rft_dat=%3Cproquest_cross%3E2658228908%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2645996085&rft_id=info:pmid/35489886&rfr_iscdi=true