Computation-assisted performance optimization for photoelectrochemical photoelectrodes
The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-02, Vol.120 (6) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Jiang, Xiao Cheng, Xu Zhang, Zemin Chen, Tao Tao, Kun Han, Weihua |
description | The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials. |
doi_str_mv | 10.1063/5.0080794 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0080794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626095860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nSpM1RFr9gwYt6DWk6ZbO0TU2yB_31VrsXL56GeXmYgZeQSworCpLfihVABaUqjsiCQlnmnNLqmCwAgOdSCXpKzmLcTatgnC_I-9r34z6Z5PyQmxhdTNhkI4bWh94MFjM_Jte7r1-RTWk2bn3y2KFNwdst9s6a7k_YYDwnJ63pIl4c5pK8Pdy_rp_yzcvj8_puk1umWMoRiraoQdSsoqhUQw0wqIpaCFW2XGLVUBQgaCnqAmVtFAMDDVMcWCtAUb4kV_PdMfiPPcakd34fhumlZpJJUKKSMKnrWdngYwzY6jG43oRPTUH_1KaFPtQ22ZvZRuvmWv7B3wXSbXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626095860</pqid></control><display><type>article</type><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</creator><creatorcontrib>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</creatorcontrib><description>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0080794</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Continuity equation ; Density functional theory ; Depletion ; Metal oxides ; Minority carriers ; Optimization ; Photocatalysis ; Thickness</subject><ispartof>Applied physics letters, 2022-02, Vol.120 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</citedby><cites>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</cites><orcidid>0000-0002-9313-0749 ; 0000-0003-1422-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0080794$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Tao, Kun</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><title>Applied physics letters</title><description>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</description><subject>Applied physics</subject><subject>Continuity equation</subject><subject>Density functional theory</subject><subject>Depletion</subject><subject>Metal oxides</subject><subject>Minority carriers</subject><subject>Optimization</subject><subject>Photocatalysis</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nSpM1RFr9gwYt6DWk6ZbO0TU2yB_31VrsXL56GeXmYgZeQSworCpLfihVABaUqjsiCQlnmnNLqmCwAgOdSCXpKzmLcTatgnC_I-9r34z6Z5PyQmxhdTNhkI4bWh94MFjM_Jte7r1-RTWk2bn3y2KFNwdst9s6a7k_YYDwnJ63pIl4c5pK8Pdy_rp_yzcvj8_puk1umWMoRiraoQdSsoqhUQw0wqIpaCFW2XGLVUBQgaCnqAmVtFAMDDVMcWCtAUb4kV_PdMfiPPcakd34fhumlZpJJUKKSMKnrWdngYwzY6jG43oRPTUH_1KaFPtQ22ZvZRuvmWv7B3wXSbXo</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Jiang, Xiao</creator><creator>Cheng, Xu</creator><creator>Zhang, Zemin</creator><creator>Chen, Tao</creator><creator>Tao, Kun</creator><creator>Han, Weihua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid><orcidid>https://orcid.org/0000-0003-1422-9482</orcidid></search><sort><creationdate>20220207</creationdate><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><author>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Continuity equation</topic><topic>Density functional theory</topic><topic>Depletion</topic><topic>Metal oxides</topic><topic>Minority carriers</topic><topic>Optimization</topic><topic>Photocatalysis</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Tao, Kun</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiao</au><au>Cheng, Xu</au><au>Zhang, Zemin</au><au>Chen, Tao</au><au>Tao, Kun</au><au>Han, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</atitle><jtitle>Applied physics letters</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>120</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0080794</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid><orcidid>https://orcid.org/0000-0003-1422-9482</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-02, Vol.120 (6) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0080794 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Continuity equation Density functional theory Depletion Metal oxides Minority carriers Optimization Photocatalysis Thickness |
title | Computation-assisted performance optimization for photoelectrochemical photoelectrodes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation-assisted%20performance%20optimization%20for%20photoelectrochemical%20photoelectrodes&rft.jtitle=Applied%20physics%20letters&rft.au=Jiang,%20Xiao&rft.date=2022-02-07&rft.volume=120&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0080794&rft_dat=%3Cproquest_cross%3E2626095860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626095860&rft_id=info:pmid/&rfr_iscdi=true |