Computation-assisted performance optimization for photoelectrochemical photoelectrodes

The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-02, Vol.120 (6)
Hauptverfasser: Jiang, Xiao, Cheng, Xu, Zhang, Zemin, Chen, Tao, Tao, Kun, Han, Weihua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Applied physics letters
container_volume 120
creator Jiang, Xiao
Cheng, Xu
Zhang, Zemin
Chen, Tao
Tao, Kun
Han, Weihua
description The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.
doi_str_mv 10.1063/5.0080794
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0080794</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626095860</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</originalsourceid><addsrcrecordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nSpM1RFr9gwYt6DWk6ZbO0TU2yB_31VrsXL56GeXmYgZeQSworCpLfihVABaUqjsiCQlnmnNLqmCwAgOdSCXpKzmLcTatgnC_I-9r34z6Z5PyQmxhdTNhkI4bWh94MFjM_Jte7r1-RTWk2bn3y2KFNwdst9s6a7k_YYDwnJ63pIl4c5pK8Pdy_rp_yzcvj8_puk1umWMoRiraoQdSsoqhUQw0wqIpaCFW2XGLVUBQgaCnqAmVtFAMDDVMcWCtAUb4kV_PdMfiPPcakd34fhumlZpJJUKKSMKnrWdngYwzY6jG43oRPTUH_1KaFPtQ22ZvZRuvmWv7B3wXSbXo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626095860</pqid></control><display><type>article</type><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</creator><creatorcontrib>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</creatorcontrib><description>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0080794</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Continuity equation ; Density functional theory ; Depletion ; Metal oxides ; Minority carriers ; Optimization ; Photocatalysis ; Thickness</subject><ispartof>Applied physics letters, 2022-02, Vol.120 (6)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</citedby><cites>FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</cites><orcidid>0000-0002-9313-0749 ; 0000-0003-1422-9482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0080794$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Tao, Kun</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><title>Applied physics letters</title><description>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</description><subject>Applied physics</subject><subject>Continuity equation</subject><subject>Density functional theory</subject><subject>Depletion</subject><subject>Metal oxides</subject><subject>Minority carriers</subject><subject>Optimization</subject><subject>Photocatalysis</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E1LxDAQBuAgCq6rB_9BwZNC10nSpM1RFr9gwYt6DWk6ZbO0TU2yB_31VrsXL56GeXmYgZeQSworCpLfihVABaUqjsiCQlnmnNLqmCwAgOdSCXpKzmLcTatgnC_I-9r34z6Z5PyQmxhdTNhkI4bWh94MFjM_Jte7r1-RTWk2bn3y2KFNwdst9s6a7k_YYDwnJ63pIl4c5pK8Pdy_rp_yzcvj8_puk1umWMoRiraoQdSsoqhUQw0wqIpaCFW2XGLVUBQgaCnqAmVtFAMDDVMcWCtAUb4kV_PdMfiPPcakd34fhumlZpJJUKKSMKnrWdngYwzY6jG43oRPTUH_1KaFPtQ22ZvZRuvmWv7B3wXSbXo</recordid><startdate>20220207</startdate><enddate>20220207</enddate><creator>Jiang, Xiao</creator><creator>Cheng, Xu</creator><creator>Zhang, Zemin</creator><creator>Chen, Tao</creator><creator>Tao, Kun</creator><creator>Han, Weihua</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid><orcidid>https://orcid.org/0000-0003-1422-9482</orcidid></search><sort><creationdate>20220207</creationdate><title>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</title><author>Jiang, Xiao ; Cheng, Xu ; Zhang, Zemin ; Chen, Tao ; Tao, Kun ; Han, Weihua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-e04f4b05b281e99d1a02084b5597f36e8d1e505175b4e6ba920a0d29302f50913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Continuity equation</topic><topic>Density functional theory</topic><topic>Depletion</topic><topic>Metal oxides</topic><topic>Minority carriers</topic><topic>Optimization</topic><topic>Photocatalysis</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Xiao</creatorcontrib><creatorcontrib>Cheng, Xu</creatorcontrib><creatorcontrib>Zhang, Zemin</creatorcontrib><creatorcontrib>Chen, Tao</creatorcontrib><creatorcontrib>Tao, Kun</creatorcontrib><creatorcontrib>Han, Weihua</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiang, Xiao</au><au>Cheng, Xu</au><au>Zhang, Zemin</au><au>Chen, Tao</au><au>Tao, Kun</au><au>Han, Weihua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation-assisted performance optimization for photoelectrochemical photoelectrodes</atitle><jtitle>Applied physics letters</jtitle><date>2022-02-07</date><risdate>2022</risdate><volume>120</volume><issue>6</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The generation rate and collection efficiency of photocarriers fatally determine the photoelectrochemical performance of photoelectrodes. However, it is challenging to simultaneously reach a high generation rate and a high collection efficiency due to their conflictive dependence on the thickness of photocatalytic films, especially for metal oxide photocatalysts. Therefore, it is critical to select an appropriate thickness to reach the highest photocatalytic rate under certain light illustration. Herein, we proposed a physical model to predict the optimal thickness of photocatalytic films by combining computation and experiments. In this model, a photoelectrode was investigated by thoroughly considering the electric potential distribution in the whole photocatalytic film rather than only considering the depletion layer as previously. We solved the continuity equation and got the distribution of minority carriers in photocatalytic films. The used parameters for calculation were obtained through density functional theory calculation and experiments. The optimal thickness of photocatalytic films can be predicted with this model. We have used CuFeO2 films as the model material to verify the accuracy of the proposed model. Compared to the traditional trial-and-error process, our computation-assisted approach is highly efficient and can be broadly employed to other materials.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0080794</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-9313-0749</orcidid><orcidid>https://orcid.org/0000-0003-1422-9482</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-02, Vol.120 (6)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0080794
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Continuity equation
Density functional theory
Depletion
Metal oxides
Minority carriers
Optimization
Photocatalysis
Thickness
title Computation-assisted performance optimization for photoelectrochemical photoelectrodes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation-assisted%20performance%20optimization%20for%20photoelectrochemical%20photoelectrodes&rft.jtitle=Applied%20physics%20letters&rft.au=Jiang,%20Xiao&rft.date=2022-02-07&rft.volume=120&rft.issue=6&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0080794&rft_dat=%3Cproquest_cross%3E2626095860%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626095860&rft_id=info:pmid/&rfr_iscdi=true