Self-powered energy-harvesting magnetic field sensor
Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detectio...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2022-01, Vol.120 (4) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 120 |
creator | Hu, Lizhi Wu, Hanzhou Zhang, Qianshi You, Haoran Jiao, Jie Luo, Haosu Wang, Yaojin Gao, Anran Duan, Chungang |
description | Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks. |
doi_str_mv | 10.1063/5.0079709 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0079709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622669700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</originalsourceid><addsrcrecordid>eNp90EtLw0AQB_BFFKyPg98g4EkhdSbbfeQoxRcUPKjnZbOZrSltNu6mlX57Iy16EDwNAz_-82DsAmGMIPmNGAOoUkF5wEYISuUcUR-yEQDwXJYCj9lJSouhFQXnIzZ5oaXPu_BJkeqMWorzbf5u44ZS37TzbGXnLfWNy3xDyzpL1KYQz9iRt8tE5_t6yt7u716nj_ns-eFpejvLHS95nyucuJJ8Ya3WQpSoZCUkFGUB6DSgJc05aoFcowAtZV1Rpbny5Cc1VtrxU3a5y-1i-FgPG5lFWMd2GGkKWRRSDofCoK52ysWQUiRvutisbNwaBPP9FCPM_imDvd7Z5Jre9k1of_AmxF9outr_h_8mfwERMm4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622669700</pqid></control><display><type>article</type><title>Self-powered energy-harvesting magnetic field sensor</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</creator><creatorcontrib>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</creatorcontrib><description>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0079709</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Energy harvesting ; Internet of Things ; Laminates ; Load resistance ; Magnetic resonance ; Magnetostriction ; Piezoelectricity ; Power management ; Sensors ; Single crystals</subject><ispartof>Applied physics letters, 2022-01, Vol.120 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</citedby><cites>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</cites><orcidid>0000-0002-6160-2043 ; 0000-0002-5380-4980 ; 0000-0003-2561-1855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0079709$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hu, Lizhi</creatorcontrib><creatorcontrib>Wu, Hanzhou</creatorcontrib><creatorcontrib>Zhang, Qianshi</creatorcontrib><creatorcontrib>You, Haoran</creatorcontrib><creatorcontrib>Jiao, Jie</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><creatorcontrib>Gao, Anran</creatorcontrib><creatorcontrib>Duan, Chungang</creatorcontrib><title>Self-powered energy-harvesting magnetic field sensor</title><title>Applied physics letters</title><description>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</description><subject>Applied physics</subject><subject>Energy harvesting</subject><subject>Internet of Things</subject><subject>Laminates</subject><subject>Load resistance</subject><subject>Magnetic resonance</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Power management</subject><subject>Sensors</subject><subject>Single crystals</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQB_BFFKyPg98g4EkhdSbbfeQoxRcUPKjnZbOZrSltNu6mlX57Iy16EDwNAz_-82DsAmGMIPmNGAOoUkF5wEYISuUcUR-yEQDwXJYCj9lJSouhFQXnIzZ5oaXPu_BJkeqMWorzbf5u44ZS37TzbGXnLfWNy3xDyzpL1KYQz9iRt8tE5_t6yt7u716nj_ns-eFpejvLHS95nyucuJJ8Ya3WQpSoZCUkFGUB6DSgJc05aoFcowAtZV1Rpbny5Cc1VtrxU3a5y-1i-FgPG5lFWMd2GGkKWRRSDofCoK52ysWQUiRvutisbNwaBPP9FCPM_imDvd7Z5Jre9k1of_AmxF9outr_h_8mfwERMm4A</recordid><startdate>20220124</startdate><enddate>20220124</enddate><creator>Hu, Lizhi</creator><creator>Wu, Hanzhou</creator><creator>Zhang, Qianshi</creator><creator>You, Haoran</creator><creator>Jiao, Jie</creator><creator>Luo, Haosu</creator><creator>Wang, Yaojin</creator><creator>Gao, Anran</creator><creator>Duan, Chungang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6160-2043</orcidid><orcidid>https://orcid.org/0000-0002-5380-4980</orcidid><orcidid>https://orcid.org/0000-0003-2561-1855</orcidid></search><sort><creationdate>20220124</creationdate><title>Self-powered energy-harvesting magnetic field sensor</title><author>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Energy harvesting</topic><topic>Internet of Things</topic><topic>Laminates</topic><topic>Load resistance</topic><topic>Magnetic resonance</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Power management</topic><topic>Sensors</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lizhi</creatorcontrib><creatorcontrib>Wu, Hanzhou</creatorcontrib><creatorcontrib>Zhang, Qianshi</creatorcontrib><creatorcontrib>You, Haoran</creatorcontrib><creatorcontrib>Jiao, Jie</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><creatorcontrib>Gao, Anran</creatorcontrib><creatorcontrib>Duan, Chungang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lizhi</au><au>Wu, Hanzhou</au><au>Zhang, Qianshi</au><au>You, Haoran</au><au>Jiao, Jie</au><au>Luo, Haosu</au><au>Wang, Yaojin</au><au>Gao, Anran</au><au>Duan, Chungang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-powered energy-harvesting magnetic field sensor</atitle><jtitle>Applied physics letters</jtitle><date>2022-01-24</date><risdate>2022</risdate><volume>120</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0079709</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6160-2043</orcidid><orcidid>https://orcid.org/0000-0002-5380-4980</orcidid><orcidid>https://orcid.org/0000-0003-2561-1855</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2022-01, Vol.120 (4) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0079709 |
source | American Institute of Physics (AIP) Journals; Alma/SFX Local Collection |
subjects | Applied physics Energy harvesting Internet of Things Laminates Load resistance Magnetic resonance Magnetostriction Piezoelectricity Power management Sensors Single crystals |
title | Self-powered energy-harvesting magnetic field sensor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-powered%20energy-harvesting%20magnetic%20field%20sensor&rft.jtitle=Applied%20physics%20letters&rft.au=Hu,%20Lizhi&rft.date=2022-01-24&rft.volume=120&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0079709&rft_dat=%3Cproquest_cross%3E2622669700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622669700&rft_id=info:pmid/&rfr_iscdi=true |