Self-powered energy-harvesting magnetic field sensor

Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detectio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2022-01, Vol.120 (4)
Hauptverfasser: Hu, Lizhi, Wu, Hanzhou, Zhang, Qianshi, You, Haoran, Jiao, Jie, Luo, Haosu, Wang, Yaojin, Gao, Anran, Duan, Chungang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics letters
container_volume 120
creator Hu, Lizhi
Wu, Hanzhou
Zhang, Qianshi
You, Haoran
Jiao, Jie
Luo, Haosu
Wang, Yaojin
Gao, Anran
Duan, Chungang
description Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.
doi_str_mv 10.1063/5.0079709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0079709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2622669700</sourcerecordid><originalsourceid>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</originalsourceid><addsrcrecordid>eNp90EtLw0AQB_BFFKyPg98g4EkhdSbbfeQoxRcUPKjnZbOZrSltNu6mlX57Iy16EDwNAz_-82DsAmGMIPmNGAOoUkF5wEYISuUcUR-yEQDwXJYCj9lJSouhFQXnIzZ5oaXPu_BJkeqMWorzbf5u44ZS37TzbGXnLfWNy3xDyzpL1KYQz9iRt8tE5_t6yt7u716nj_ns-eFpejvLHS95nyucuJJ8Ya3WQpSoZCUkFGUB6DSgJc05aoFcowAtZV1Rpbny5Cc1VtrxU3a5y-1i-FgPG5lFWMd2GGkKWRRSDofCoK52ysWQUiRvutisbNwaBPP9FCPM_imDvd7Z5Jre9k1of_AmxF9outr_h_8mfwERMm4A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2622669700</pqid></control><display><type>article</type><title>Self-powered energy-harvesting magnetic field sensor</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</creator><creatorcontrib>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</creatorcontrib><description>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0079709</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Energy harvesting ; Internet of Things ; Laminates ; Load resistance ; Magnetic resonance ; Magnetostriction ; Piezoelectricity ; Power management ; Sensors ; Single crystals</subject><ispartof>Applied physics letters, 2022-01, Vol.120 (4)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</citedby><cites>FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</cites><orcidid>0000-0002-6160-2043 ; 0000-0002-5380-4980 ; 0000-0003-2561-1855</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0079709$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Hu, Lizhi</creatorcontrib><creatorcontrib>Wu, Hanzhou</creatorcontrib><creatorcontrib>Zhang, Qianshi</creatorcontrib><creatorcontrib>You, Haoran</creatorcontrib><creatorcontrib>Jiao, Jie</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><creatorcontrib>Gao, Anran</creatorcontrib><creatorcontrib>Duan, Chungang</creatorcontrib><title>Self-powered energy-harvesting magnetic field sensor</title><title>Applied physics letters</title><description>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</description><subject>Applied physics</subject><subject>Energy harvesting</subject><subject>Internet of Things</subject><subject>Laminates</subject><subject>Load resistance</subject><subject>Magnetic resonance</subject><subject>Magnetostriction</subject><subject>Piezoelectricity</subject><subject>Power management</subject><subject>Sensors</subject><subject>Single crystals</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AQB_BFFKyPg98g4EkhdSbbfeQoxRcUPKjnZbOZrSltNu6mlX57Iy16EDwNAz_-82DsAmGMIPmNGAOoUkF5wEYISuUcUR-yEQDwXJYCj9lJSouhFQXnIzZ5oaXPu_BJkeqMWorzbf5u44ZS37TzbGXnLfWNy3xDyzpL1KYQz9iRt8tE5_t6yt7u716nj_ns-eFpejvLHS95nyucuJJ8Ya3WQpSoZCUkFGUB6DSgJc05aoFcowAtZV1Rpbny5Cc1VtrxU3a5y-1i-FgPG5lFWMd2GGkKWRRSDofCoK52ysWQUiRvutisbNwaBPP9FCPM_imDvd7Z5Jre9k1of_AmxF9outr_h_8mfwERMm4A</recordid><startdate>20220124</startdate><enddate>20220124</enddate><creator>Hu, Lizhi</creator><creator>Wu, Hanzhou</creator><creator>Zhang, Qianshi</creator><creator>You, Haoran</creator><creator>Jiao, Jie</creator><creator>Luo, Haosu</creator><creator>Wang, Yaojin</creator><creator>Gao, Anran</creator><creator>Duan, Chungang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6160-2043</orcidid><orcidid>https://orcid.org/0000-0002-5380-4980</orcidid><orcidid>https://orcid.org/0000-0003-2561-1855</orcidid></search><sort><creationdate>20220124</creationdate><title>Self-powered energy-harvesting magnetic field sensor</title><author>Hu, Lizhi ; Wu, Hanzhou ; Zhang, Qianshi ; You, Haoran ; Jiao, Jie ; Luo, Haosu ; Wang, Yaojin ; Gao, Anran ; Duan, Chungang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c393t-714c9ef2aa88559176b56029201c801ae833185138150866dbeb837fef4d1b8c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Applied physics</topic><topic>Energy harvesting</topic><topic>Internet of Things</topic><topic>Laminates</topic><topic>Load resistance</topic><topic>Magnetic resonance</topic><topic>Magnetostriction</topic><topic>Piezoelectricity</topic><topic>Power management</topic><topic>Sensors</topic><topic>Single crystals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Lizhi</creatorcontrib><creatorcontrib>Wu, Hanzhou</creatorcontrib><creatorcontrib>Zhang, Qianshi</creatorcontrib><creatorcontrib>You, Haoran</creatorcontrib><creatorcontrib>Jiao, Jie</creatorcontrib><creatorcontrib>Luo, Haosu</creatorcontrib><creatorcontrib>Wang, Yaojin</creatorcontrib><creatorcontrib>Gao, Anran</creatorcontrib><creatorcontrib>Duan, Chungang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Lizhi</au><au>Wu, Hanzhou</au><au>Zhang, Qianshi</au><au>You, Haoran</au><au>Jiao, Jie</au><au>Luo, Haosu</au><au>Wang, Yaojin</au><au>Gao, Anran</au><au>Duan, Chungang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-powered energy-harvesting magnetic field sensor</atitle><jtitle>Applied physics letters</jtitle><date>2022-01-24</date><risdate>2022</risdate><volume>120</volume><issue>4</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Driven largely by the recent growth in the Internet of Things, there is a rapid surge in the demand for low-powered or self-powered sensors and devices. Here, we report a fully self-powered magnetic sensor system based on the magnetoelectric (ME) effect. This device consists of both a field-detection element and a power-generation element, which are designed using magnetostrictive Metglas amorphous ribbons and piezoelectric PMN-PT single crystal plates, respectively. The ME laminates for energy harvesting exhibit a giant resonance magnetic responsivity of 350 nC/Oe at 15 kHz. The magnetic-field sensing element shows a linear response with a high resolution up to 32 nT, and the magnetic-harvest element can reach a power of 48.68 mW/Oe at an optimum load resistance of 5 kΩ. The self-powered sensor system has shown excellent capability to convert magnetic energy into electrical energy, as demonstrated in powering a small electronic screen. The high sensitivity and power generation of our system suggest potential applications in sustainable intelligent sensor networks.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0079709</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-6160-2043</orcidid><orcidid>https://orcid.org/0000-0002-5380-4980</orcidid><orcidid>https://orcid.org/0000-0003-2561-1855</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2022-01, Vol.120 (4)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0079709
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Applied physics
Energy harvesting
Internet of Things
Laminates
Load resistance
Magnetic resonance
Magnetostriction
Piezoelectricity
Power management
Sensors
Single crystals
title Self-powered energy-harvesting magnetic field sensor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A37%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-powered%20energy-harvesting%20magnetic%20field%20sensor&rft.jtitle=Applied%20physics%20letters&rft.au=Hu,%20Lizhi&rft.date=2022-01-24&rft.volume=120&rft.issue=4&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0079709&rft_dat=%3Cproquest_cross%3E2622669700%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2622669700&rft_id=info:pmid/&rfr_iscdi=true