Numerical simulation of similarities between rotating detonation and high-frequency combustion instability under two mixing schemes
This paper presents an experimental study on rotating detonations in a hollow combustor with the slit-orifice nozzle. The experimental results reveal that the propagation speed of detonation waves increases with the rise of mass flow rates and is greater than the Chapman–Jouguet detonation speed (VC...
Gespeichert in:
Veröffentlicht in: | AIP advances 2022-02, Vol.12 (2), p.025310-025310-14 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper presents an experimental study on rotating detonations in a hollow combustor with the slit-orifice nozzle. The experimental results reveal that the propagation speed of detonation waves increases with the rise of mass flow rates and is greater than the Chapman–Jouguet detonation speed (VC−J). Furthermore, numerical simulations of rotating detonation in a non-premixed three-dimensional cylindrical combustor have been conducted based on a multispecies reacting code. The influence of two mixing schemes—that is, slit-orifice and coaxial injector—on detonation waves are studied to determine whether the characteristics of detonation waves tend toward high-frequency combustion instability due to changes in the mixing scheme. It is found that the slit-orifice scheme’s detonation speed, pressure, and temperature are significantly higher than those of the coaxial injector scheme. In particular, the detonation speed of the former reaches 124% of the VC−J, while that of the latter is only 80.5% of the theoretical value. The numerical results reveal that the low-speed detonation is caused by the deterioration of the hydrogen (H2)/air mixing conditions. Moreover, the flow-field structures of two mixing schemes were comparable, both containing transverse detonation waves, oblique shocks, contact surfaces, and wedge-shaped reactant regions. Furthermore, the Rayleigh index analysis showed that the unsteady heat release was in phase with the pressure fluctuations, amplifying the pressure. Therefore, it is suggested that high-frequency combustion instability may be a manifestation of rotating detonation waves under poor mixing conditions. |
---|---|
ISSN: | 2158-3226 2158-3226 |
DOI: | 10.1063/5.0079455 |