On the validity of the guiding-center approximation in a magnetic dipole field
The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by magnetic-field nonuniformity. When a magnetically...
Gespeichert in:
Veröffentlicht in: | Physics of plasmas 2022-02, Vol.29 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of plasmas |
container_volume | 29 |
creator | Brizard, Alain J. Markowski, Danielle G. |
description | The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by magnetic-field nonuniformity. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when guiding-center polarization effects are taken into account. |
doi_str_mv | 10.1063/5.0078786 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0078786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2624465359</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-7728bbca3be29047d1a7c9353813a90dcc028cb004c30eb651477f1fe269035d3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodb5ImaZYy-ILB2Si4C2majhk6bU1Tcf69mcfa1b0HPu495yB0TWBGQLB7PgOQhSzECZoQKFQmhcxPd7uETIj88xxdDMMaAHLBiwl6W7Y4fjn8Yxpf-bjFXb3XqzHJdpVZ10YXsOn70P36jYm-a7FvscEbs2pd9BZXvu8ah2vvmuoSndWmGdzVcU7Rx9Pj-_wlWyyfX-cPi8xSRWMmJS3K0hpWOqoglxUx0irGWUGYUVBZC7SwZTJpGbhScJJLWZPaUaGA8YpN0c3hbrL1Pboh6nU3hja91FTQPGVjXCXq9kDZ0A1DcLXuQ8oQtpqA3tWluT7Wldi7AztYH_cx_4H_ACBCaPI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624465359</pqid></control><display><type>article</type><title>On the validity of the guiding-center approximation in a magnetic dipole field</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Brizard, Alain J. ; Markowski, Danielle G.</creator><creatorcontrib>Brizard, Alain J. ; Markowski, Danielle G.</creatorcontrib><description>The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by magnetic-field nonuniformity. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when guiding-center polarization effects are taken into account.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0078786</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Angular momentum ; Approximation ; Magnetic dipoles ; Magnetic moments ; Mathematical analysis ; Nonuniformity ; Particle motion ; Plasma physics ; Polarization</subject><ispartof>Physics of plasmas, 2022-02, Vol.29 (2)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-7728bbca3be29047d1a7c9353813a90dcc028cb004c30eb651477f1fe269035d3</citedby><cites>FETCH-LOGICAL-c292t-7728bbca3be29047d1a7c9353813a90dcc028cb004c30eb651477f1fe269035d3</cites><orcidid>0000-0002-0192-6273</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0078786$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Markowski, Danielle G.</creatorcontrib><title>On the validity of the guiding-center approximation in a magnetic dipole field</title><title>Physics of plasmas</title><description>The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by magnetic-field nonuniformity. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when guiding-center polarization effects are taken into account.</description><subject>Angular momentum</subject><subject>Approximation</subject><subject>Magnetic dipoles</subject><subject>Magnetic moments</subject><subject>Mathematical analysis</subject><subject>Nonuniformity</subject><subject>Particle motion</subject><subject>Plasma physics</subject><subject>Polarization</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI4u_AcBVwodb5ImaZYy-ILB2Si4C2majhk6bU1Tcf69mcfa1b0HPu495yB0TWBGQLB7PgOQhSzECZoQKFQmhcxPd7uETIj88xxdDMMaAHLBiwl6W7Y4fjn8Yxpf-bjFXb3XqzHJdpVZ10YXsOn70P36jYm-a7FvscEbs2pd9BZXvu8ah2vvmuoSndWmGdzVcU7Rx9Pj-_wlWyyfX-cPi8xSRWMmJS3K0hpWOqoglxUx0irGWUGYUVBZC7SwZTJpGbhScJJLWZPaUaGA8YpN0c3hbrL1Pboh6nU3hja91FTQPGVjXCXq9kDZ0A1DcLXuQ8oQtpqA3tWluT7Wldi7AztYH_cx_4H_ACBCaPI</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Brizard, Alain J.</creator><creator>Markowski, Danielle G.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0192-6273</orcidid></search><sort><creationdate>202202</creationdate><title>On the validity of the guiding-center approximation in a magnetic dipole field</title><author>Brizard, Alain J. ; Markowski, Danielle G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-7728bbca3be29047d1a7c9353813a90dcc028cb004c30eb651477f1fe269035d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Angular momentum</topic><topic>Approximation</topic><topic>Magnetic dipoles</topic><topic>Magnetic moments</topic><topic>Mathematical analysis</topic><topic>Nonuniformity</topic><topic>Particle motion</topic><topic>Plasma physics</topic><topic>Polarization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brizard, Alain J.</creatorcontrib><creatorcontrib>Markowski, Danielle G.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brizard, Alain J.</au><au>Markowski, Danielle G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the validity of the guiding-center approximation in a magnetic dipole field</atitle><jtitle>Physics of plasmas</jtitle><date>2022-02</date><risdate>2022</risdate><volume>29</volume><issue>2</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The problem of the charged-particle motion in an axisymmetric magnetic-dipole geometry is used to assess the validity of Hamiltonian guiding-center theory, which includes higher-order corrections associated with guiding-center polarization induced by magnetic-field nonuniformity. When a magnetically confined charged-particle orbit is regular (i.e., its guiding-center magnetic moment is adiabatically invariant), the guiding-center approximation, which conserves both energy and azimuthal canonical angular momentum, is shown to be faithful to the particle orbit when guiding-center polarization effects are taken into account.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0078786</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0192-6273</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-664X |
ispartof | Physics of plasmas, 2022-02, Vol.29 (2) |
issn | 1070-664X 1089-7674 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0078786 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Angular momentum Approximation Magnetic dipoles Magnetic moments Mathematical analysis Nonuniformity Particle motion Plasma physics Polarization |
title | On the validity of the guiding-center approximation in a magnetic dipole field |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T14%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20validity%20of%20the%20guiding-center%20approximation%20in%20a%20magnetic%20dipole%20field&rft.jtitle=Physics%20of%20plasmas&rft.au=Brizard,%20Alain%20J.&rft.date=2022-02&rft.volume=29&rft.issue=2&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0078786&rft_dat=%3Cproquest_cross%3E2624465359%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624465359&rft_id=info:pmid/&rfr_iscdi=true |