Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold

Based on the theory of critical gradient model (CGM) and following the simulation method proposed by Waltz et al. [Nucl. Fusion 55, 123012 (2015)], a combination of TGLFEP and EPtran code is employed to predict the energetic particle (EP) transport induced by Alfvén eigenmodes (AEs). To be consisten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2022-03, Vol.29 (3)
Hauptverfasser: Zou, Y., Chan, V. S., Van Zeeland, M. A., Heidbrink, W. W., Todo, Y., Chen, Wei, Wang, Y., Chen, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of plasmas
container_volume 29
creator Zou, Y.
Chan, V. S.
Van Zeeland, M. A.
Heidbrink, W. W.
Todo, Y.
Chen, Wei
Wang, Y.
Chen, J.
description Based on the theory of critical gradient model (CGM) and following the simulation method proposed by Waltz et al. [Nucl. Fusion 55, 123012 (2015)], a combination of TGLFEP and EPtran code is employed to predict the energetic particle (EP) transport induced by Alfvén eigenmodes (AEs). To be consistent with the experiment, recent improvements to the simulation method include consideration of threshold evolution and orbit loss due to finite orbit width. The revised CGM is applied to simulate two DIII-D experimental discharges (#142111 and #153071). It well reproduces the experimental profiles with multiple unstable AEs and large-scale EP transport. Discharge #142111 had previously been simulated using a nonlinear MHD-kinetic code MEGA [Todo et al., Nucl. Fusion 55, 073020 (2015)] with a transport mechanism based on stochasticity induced by overlapping AE. By comparing the simulated EP profiles, we find that the AE transport threshold is approximated by both the MEGA nonlinear stability threshold and the proposed CGM threshold (error
doi_str_mv 10.1063/5.0078098
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0078098</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2637184159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c433t-104871f67914411b5b757beb3379840e36167269924db39e8446fb4f7306dab33</originalsourceid><addsrcrecordid>eNp90c9LBCEUB_AhCvp56D-QOhVM6eroeIzoFwR1KOgmjr7ZNWbHSd1gr_3lOe1Wh6CDPIUPX3nvFcUhwWcEc3penWEsaizrjWKH4FqWggu2Od4FLjlnL9vFboyvGGPGq3qn-HgMYJ1JzvfItyjNAEEPYQrJGTTokEsHaDQxBdcsvmCzRLpHbj4E_w4WmeAy0x2aBm0d9AnNvYUuG5uP7pbRxe_wFHQfBx9SfgWIM9_Z_WKr1V2Eg3XdK56vr54ub8v7h5u7y4v70jBKU0kwqwVpuZCEMUKaqhGVaKChVMiaYaCccDHhUk6YbaiEmjHeNqwVFHOrM9srjla5PianonEJzMz4vgeTFJFCYkIyOl6h3NvbAmJSr34RchNRTTgVpGakklmdrJQJPsYArRqCm-uwVASrcQ-qUus9ZHu6suOPepzfD3734Reqwbb_4b_Jn_5alxs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2637184159</pqid></control><display><type>article</type><title>Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zou, Y. ; Chan, V. S. ; Van Zeeland, M. A. ; Heidbrink, W. W. ; Todo, Y. ; Chen, Wei ; Wang, Y. ; Chen, J.</creator><creatorcontrib>Zou, Y. ; Chan, V. S. ; Van Zeeland, M. A. ; Heidbrink, W. W. ; Todo, Y. ; Chen, Wei ; Wang, Y. ; Chen, J. ; General Atomics, San Diego, CA (United States)</creatorcontrib><description>Based on the theory of critical gradient model (CGM) and following the simulation method proposed by Waltz et al. [Nucl. Fusion 55, 123012 (2015)], a combination of TGLFEP and EPtran code is employed to predict the energetic particle (EP) transport induced by Alfvén eigenmodes (AEs). To be consistent with the experiment, recent improvements to the simulation method include consideration of threshold evolution and orbit loss due to finite orbit width. The revised CGM is applied to simulate two DIII-D experimental discharges (#142111 and #153071). It well reproduces the experimental profiles with multiple unstable AEs and large-scale EP transport. Discharge #142111 had previously been simulated using a nonlinear MHD-kinetic code MEGA [Todo et al., Nucl. Fusion 55, 073020 (2015)] with a transport mechanism based on stochasticity induced by overlapping AE. By comparing the simulated EP profiles, we find that the AE transport threshold is approximated by both the MEGA nonlinear stability threshold and the proposed CGM threshold (error &lt;5% for single n and &lt;17% for multiple n simulation). Both of them are larger than the linear stability threshold of the most unstable AE mode by a quantity of the order of the flux needed to sustain EP transport by the background turbulence. We have also applied the improved CGM to simulate the α particle redistribution for a China Fusion Engineering Test Reactor steady state scenario. Because of the clear separation between the AE unstable region and the loss cone, only a moderate α particle loss of ∼9.6% is predicted.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0078098</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alpha particles ; Alpha rays ; CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS ; Discharge ; Energetic particles ; Engineering test reactors ; linear stability analysis ; magnetic confinement fusion ; magnetohydrodynamics ; plasma dynamics, plasma properties and parameters ; Plasma physics ; plasma waves ; Simulation ; Stability ; tokamaks</subject><ispartof>Physics of plasmas, 2022-03, Vol.29 (3)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c433t-104871f67914411b5b757beb3379840e36167269924db39e8446fb4f7306dab33</citedby><cites>FETCH-LOGICAL-c433t-104871f67914411b5b757beb3379840e36167269924db39e8446fb4f7306dab33</cites><orcidid>0000-0001-9323-8285 ; 0000-0003-3311-5931 ; 0000-0003-3273-2663 ; 0000-0002-6942-8043 ; 0000-0003-1781-9744 ; 0000000332732663 ; 0000000193238285 ; 0000000333115931 ; 0000000269428043 ; 0000000317819744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0078098$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,780,784,794,885,4512,27924,27925,76384</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1979011$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Y.</creatorcontrib><creatorcontrib>Chan, V. S.</creatorcontrib><creatorcontrib>Van Zeeland, M. A.</creatorcontrib><creatorcontrib>Heidbrink, W. W.</creatorcontrib><creatorcontrib>Todo, Y.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><title>Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold</title><title>Physics of plasmas</title><description>Based on the theory of critical gradient model (CGM) and following the simulation method proposed by Waltz et al. [Nucl. Fusion 55, 123012 (2015)], a combination of TGLFEP and EPtran code is employed to predict the energetic particle (EP) transport induced by Alfvén eigenmodes (AEs). To be consistent with the experiment, recent improvements to the simulation method include consideration of threshold evolution and orbit loss due to finite orbit width. The revised CGM is applied to simulate two DIII-D experimental discharges (#142111 and #153071). It well reproduces the experimental profiles with multiple unstable AEs and large-scale EP transport. Discharge #142111 had previously been simulated using a nonlinear MHD-kinetic code MEGA [Todo et al., Nucl. Fusion 55, 073020 (2015)] with a transport mechanism based on stochasticity induced by overlapping AE. By comparing the simulated EP profiles, we find that the AE transport threshold is approximated by both the MEGA nonlinear stability threshold and the proposed CGM threshold (error &lt;5% for single n and &lt;17% for multiple n simulation). Both of them are larger than the linear stability threshold of the most unstable AE mode by a quantity of the order of the flux needed to sustain EP transport by the background turbulence. We have also applied the improved CGM to simulate the α particle redistribution for a China Fusion Engineering Test Reactor steady state scenario. Because of the clear separation between the AE unstable region and the loss cone, only a moderate α particle loss of ∼9.6% is predicted.</description><subject>Alpha particles</subject><subject>Alpha rays</subject><subject>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</subject><subject>Discharge</subject><subject>Energetic particles</subject><subject>Engineering test reactors</subject><subject>linear stability analysis</subject><subject>magnetic confinement fusion</subject><subject>magnetohydrodynamics</subject><subject>plasma dynamics, plasma properties and parameters</subject><subject>Plasma physics</subject><subject>plasma waves</subject><subject>Simulation</subject><subject>Stability</subject><subject>tokamaks</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90c9LBCEUB_AhCvp56D-QOhVM6eroeIzoFwR1KOgmjr7ZNWbHSd1gr_3lOe1Wh6CDPIUPX3nvFcUhwWcEc3penWEsaizrjWKH4FqWggu2Od4FLjlnL9vFboyvGGPGq3qn-HgMYJ1JzvfItyjNAEEPYQrJGTTokEsHaDQxBdcsvmCzRLpHbj4E_w4WmeAy0x2aBm0d9AnNvYUuG5uP7pbRxe_wFHQfBx9SfgWIM9_Z_WKr1V2Eg3XdK56vr54ub8v7h5u7y4v70jBKU0kwqwVpuZCEMUKaqhGVaKChVMiaYaCccDHhUk6YbaiEmjHeNqwVFHOrM9srjla5PianonEJzMz4vgeTFJFCYkIyOl6h3NvbAmJSr34RchNRTTgVpGakklmdrJQJPsYArRqCm-uwVASrcQ-qUus9ZHu6suOPepzfD3734Reqwbb_4b_Jn_5alxs</recordid><startdate>20220301</startdate><enddate>20220301</enddate><creator>Zou, Y.</creator><creator>Chan, V. S.</creator><creator>Van Zeeland, M. A.</creator><creator>Heidbrink, W. W.</creator><creator>Todo, Y.</creator><creator>Chen, Wei</creator><creator>Wang, Y.</creator><creator>Chen, J.</creator><general>American Institute of Physics</general><general>American Institute of Physics (AIP)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9323-8285</orcidid><orcidid>https://orcid.org/0000-0003-3311-5931</orcidid><orcidid>https://orcid.org/0000-0003-3273-2663</orcidid><orcidid>https://orcid.org/0000-0002-6942-8043</orcidid><orcidid>https://orcid.org/0000-0003-1781-9744</orcidid><orcidid>https://orcid.org/0000000332732663</orcidid><orcidid>https://orcid.org/0000000193238285</orcidid><orcidid>https://orcid.org/0000000333115931</orcidid><orcidid>https://orcid.org/0000000269428043</orcidid><orcidid>https://orcid.org/0000000317819744</orcidid></search><sort><creationdate>20220301</creationdate><title>Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold</title><author>Zou, Y. ; Chan, V. S. ; Van Zeeland, M. A. ; Heidbrink, W. W. ; Todo, Y. ; Chen, Wei ; Wang, Y. ; Chen, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c433t-104871f67914411b5b757beb3379840e36167269924db39e8446fb4f7306dab33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alpha particles</topic><topic>Alpha rays</topic><topic>CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS</topic><topic>Discharge</topic><topic>Energetic particles</topic><topic>Engineering test reactors</topic><topic>linear stability analysis</topic><topic>magnetic confinement fusion</topic><topic>magnetohydrodynamics</topic><topic>plasma dynamics, plasma properties and parameters</topic><topic>Plasma physics</topic><topic>plasma waves</topic><topic>Simulation</topic><topic>Stability</topic><topic>tokamaks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Y.</creatorcontrib><creatorcontrib>Chan, V. S.</creatorcontrib><creatorcontrib>Van Zeeland, M. A.</creatorcontrib><creatorcontrib>Heidbrink, W. W.</creatorcontrib><creatorcontrib>Todo, Y.</creatorcontrib><creatorcontrib>Chen, Wei</creatorcontrib><creatorcontrib>Wang, Y.</creatorcontrib><creatorcontrib>Chen, J.</creatorcontrib><creatorcontrib>General Atomics, San Diego, CA (United States)</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Y.</au><au>Chan, V. S.</au><au>Van Zeeland, M. A.</au><au>Heidbrink, W. W.</au><au>Todo, Y.</au><au>Chen, Wei</au><au>Wang, Y.</au><au>Chen, J.</au><aucorp>General Atomics, San Diego, CA (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold</atitle><jtitle>Physics of plasmas</jtitle><date>2022-03-01</date><risdate>2022</risdate><volume>29</volume><issue>3</issue><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>Based on the theory of critical gradient model (CGM) and following the simulation method proposed by Waltz et al. [Nucl. Fusion 55, 123012 (2015)], a combination of TGLFEP and EPtran code is employed to predict the energetic particle (EP) transport induced by Alfvén eigenmodes (AEs). To be consistent with the experiment, recent improvements to the simulation method include consideration of threshold evolution and orbit loss due to finite orbit width. The revised CGM is applied to simulate two DIII-D experimental discharges (#142111 and #153071). It well reproduces the experimental profiles with multiple unstable AEs and large-scale EP transport. Discharge #142111 had previously been simulated using a nonlinear MHD-kinetic code MEGA [Todo et al., Nucl. Fusion 55, 073020 (2015)] with a transport mechanism based on stochasticity induced by overlapping AE. By comparing the simulated EP profiles, we find that the AE transport threshold is approximated by both the MEGA nonlinear stability threshold and the proposed CGM threshold (error &lt;5% for single n and &lt;17% for multiple n simulation). Both of them are larger than the linear stability threshold of the most unstable AE mode by a quantity of the order of the flux needed to sustain EP transport by the background turbulence. We have also applied the improved CGM to simulate the α particle redistribution for a China Fusion Engineering Test Reactor steady state scenario. Because of the clear separation between the AE unstable region and the loss cone, only a moderate α particle loss of ∼9.6% is predicted.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0078098</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0001-9323-8285</orcidid><orcidid>https://orcid.org/0000-0003-3311-5931</orcidid><orcidid>https://orcid.org/0000-0003-3273-2663</orcidid><orcidid>https://orcid.org/0000-0002-6942-8043</orcidid><orcidid>https://orcid.org/0000-0003-1781-9744</orcidid><orcidid>https://orcid.org/0000000332732663</orcidid><orcidid>https://orcid.org/0000000193238285</orcidid><orcidid>https://orcid.org/0000000333115931</orcidid><orcidid>https://orcid.org/0000000269428043</orcidid><orcidid>https://orcid.org/0000000317819744</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2022-03, Vol.29 (3)
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0078098
source AIP Journals Complete; Alma/SFX Local Collection
subjects Alpha particles
Alpha rays
CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS
Discharge
Energetic particles
Engineering test reactors
linear stability analysis
magnetic confinement fusion
magnetohydrodynamics
plasma dynamics, plasma properties and parameters
Plasma physics
plasma waves
Simulation
Stability
tokamaks
title Prediction of the energetic particle redistribution by an improved critical gradient model and analysis of the transport threshold
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A24%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20of%20the%20energetic%20particle%20redistribution%20by%20an%20improved%20critical%20gradient%20model%20and%20analysis%20of%20the%20transport%20threshold&rft.jtitle=Physics%20of%20plasmas&rft.au=Zou,%20Y.&rft.aucorp=General%20Atomics,%20San%20Diego,%20CA%20(United%20States)&rft.date=2022-03-01&rft.volume=29&rft.issue=3&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0078098&rft_dat=%3Cproquest_cross%3E2637184159%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2637184159&rft_id=info:pmid/&rfr_iscdi=true