Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study

Experiments reported that alkaline earth metal dopants greatly prolong carrier lifetime and improve the performance of perovskite solar cells. Using state-of-the-art ab initio time-domain nonadiabatic molecular dynamics (NAMD), we demonstrate that incorporation of alkaline earth metals, such as Sr a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2022-01, Vol.156 (1), p.014702-014702
Hauptverfasser: Qiao, Lu, Long, Run
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014702
container_issue 1
container_start_page 014702
container_title The Journal of chemical physics
container_volume 156
creator Qiao, Lu
Long, Run
description Experiments reported that alkaline earth metal dopants greatly prolong carrier lifetime and improve the performance of perovskite solar cells. Using state-of-the-art ab initio time-domain nonadiabatic molecular dynamics (NAMD), we demonstrate that incorporation of alkaline earth metals, such as Sr and Ba, into MAPbI3 (MA = CH3NH3+) lattice at the lead site is energetically favorable due to the largely negative formation energies about −7 eV. The replacement widens the bandgap and increases the open-circuit voltage by creating no trap states. More importantly, the substitution reduces the mixing of electron and hole wave functions by pushing the hole charge density away from the dopant together with no contribution of Sr and Ba to the conduction band edge state, thus decreasing the NA coupling. The high frequency phonons generated by enhanced atomic motions and symmetry breaking accelerate phonon-induced loss of coherence. The synergy of the three factors reduces the nonradiative recombination time by a factor of about 2 in the Sr- and Ba-doped systems with respect to pristine MAPbI3, which occurs over 1 ns and agrees well with the experiment. The study highlights the importance of various factors affecting charge carrier lifetime, establishes the mechanism of reduction of nonradiative electron–hole recombination in perovskites upon alkaline earth metal doping, and provides meaningful insights into the design of high performance of perovskite solar cells and optoelectronics.
doi_str_mv 10.1063/5.0077185
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0077185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618511650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-374806137426c774081b2836521f42f6843d14848475acc1357ac4ca7cf4c3563</originalsourceid><addsrcrecordid>eNp90cFKxDAQBuAgCq6rB98g4EWF6qRJk9SbLOoKooJ6Ltk01WjbrEm6sD690RUFBZnDXL75D_8gtEvgiACnx8URgBBEFmtoRECWmeAlrKMRQE6ykgPfRFshPAMAETkbobe7YRaijUO0rlctVu2Lam1vsFE-PuHORNUGXJtWLXHveq9qq6JdGKyflH802Bvtupnt1cc9tj2eTOn1lN7OLimeG-8W4cVGc4JPcbSdyWrXqYRCHOrlNtpoUrjZ-dpj9HB-dj-ZZlc3F5eT06tM5yXEjAomgZO0cq6FYCDJLJeUFzlpWN5wyWhNmEwjCqU1oYVQmmkldMM0LTgdo_1V7ty718GEWHU2aNO2qjduCFXOU12E8AIS3ftFn93gUy-fismylIIkdbBS2rsQvGmqubed8suKQPXxhaqovr6Q7OHKBm3jZ0nfeOH8D6zmdfMf_pv8DucplGc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2614899871</pqid></control><display><type>article</type><title>Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Qiao, Lu ; Long, Run</creator><creatorcontrib>Qiao, Lu ; Long, Run</creatorcontrib><description>Experiments reported that alkaline earth metal dopants greatly prolong carrier lifetime and improve the performance of perovskite solar cells. Using state-of-the-art ab initio time-domain nonadiabatic molecular dynamics (NAMD), we demonstrate that incorporation of alkaline earth metals, such as Sr and Ba, into MAPbI3 (MA = CH3NH3+) lattice at the lead site is energetically favorable due to the largely negative formation energies about −7 eV. The replacement widens the bandgap and increases the open-circuit voltage by creating no trap states. More importantly, the substitution reduces the mixing of electron and hole wave functions by pushing the hole charge density away from the dopant together with no contribution of Sr and Ba to the conduction band edge state, thus decreasing the NA coupling. The high frequency phonons generated by enhanced atomic motions and symmetry breaking accelerate phonon-induced loss of coherence. The synergy of the three factors reduces the nonradiative recombination time by a factor of about 2 in the Sr- and Ba-doped systems with respect to pristine MAPbI3, which occurs over 1 ns and agrees well with the experiment. The study highlights the importance of various factors affecting charge carrier lifetime, establishes the mechanism of reduction of nonradiative electron–hole recombination in perovskites upon alkaline earth metal doping, and provides meaningful insights into the design of high performance of perovskite solar cells and optoelectronics.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0077185</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Alkaline earth metals ; Barium ; Broken symmetry ; Carrier lifetime ; Charge density ; Conduction bands ; Coupling (molecular) ; Current carriers ; Dopants ; Earth ; Free energy ; Heat of formation ; Molecular dynamics ; Open circuit voltage ; Optoelectronics ; Performance enhancement ; Perovskites ; Phonons ; Photovoltaic cells ; Physics ; Solar cells ; Strontium ; Time domain analysis ; Wave functions</subject><ispartof>The Journal of chemical physics, 2022-01, Vol.156 (1), p.014702-014702</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-374806137426c774081b2836521f42f6843d14848475acc1357ac4ca7cf4c3563</citedby><cites>FETCH-LOGICAL-c290t-374806137426c774081b2836521f42f6843d14848475acc1357ac4ca7cf4c3563</cites><orcidid>0000-0003-3912-8899</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0077185$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Qiao, Lu</creatorcontrib><creatorcontrib>Long, Run</creatorcontrib><title>Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study</title><title>The Journal of chemical physics</title><description>Experiments reported that alkaline earth metal dopants greatly prolong carrier lifetime and improve the performance of perovskite solar cells. Using state-of-the-art ab initio time-domain nonadiabatic molecular dynamics (NAMD), we demonstrate that incorporation of alkaline earth metals, such as Sr and Ba, into MAPbI3 (MA = CH3NH3+) lattice at the lead site is energetically favorable due to the largely negative formation energies about −7 eV. The replacement widens the bandgap and increases the open-circuit voltage by creating no trap states. More importantly, the substitution reduces the mixing of electron and hole wave functions by pushing the hole charge density away from the dopant together with no contribution of Sr and Ba to the conduction band edge state, thus decreasing the NA coupling. The high frequency phonons generated by enhanced atomic motions and symmetry breaking accelerate phonon-induced loss of coherence. The synergy of the three factors reduces the nonradiative recombination time by a factor of about 2 in the Sr- and Ba-doped systems with respect to pristine MAPbI3, which occurs over 1 ns and agrees well with the experiment. The study highlights the importance of various factors affecting charge carrier lifetime, establishes the mechanism of reduction of nonradiative electron–hole recombination in perovskites upon alkaline earth metal doping, and provides meaningful insights into the design of high performance of perovskite solar cells and optoelectronics.</description><subject>Alkaline earth metals</subject><subject>Barium</subject><subject>Broken symmetry</subject><subject>Carrier lifetime</subject><subject>Charge density</subject><subject>Conduction bands</subject><subject>Coupling (molecular)</subject><subject>Current carriers</subject><subject>Dopants</subject><subject>Earth</subject><subject>Free energy</subject><subject>Heat of formation</subject><subject>Molecular dynamics</subject><subject>Open circuit voltage</subject><subject>Optoelectronics</subject><subject>Performance enhancement</subject><subject>Perovskites</subject><subject>Phonons</subject><subject>Photovoltaic cells</subject><subject>Physics</subject><subject>Solar cells</subject><subject>Strontium</subject><subject>Time domain analysis</subject><subject>Wave functions</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90cFKxDAQBuAgCq6rB98g4EWF6qRJk9SbLOoKooJ6Ltk01WjbrEm6sD690RUFBZnDXL75D_8gtEvgiACnx8URgBBEFmtoRECWmeAlrKMRQE6ykgPfRFshPAMAETkbobe7YRaijUO0rlctVu2Lam1vsFE-PuHORNUGXJtWLXHveq9qq6JdGKyflH802Bvtupnt1cc9tj2eTOn1lN7OLimeG-8W4cVGc4JPcbSdyWrXqYRCHOrlNtpoUrjZ-dpj9HB-dj-ZZlc3F5eT06tM5yXEjAomgZO0cq6FYCDJLJeUFzlpWN5wyWhNmEwjCqU1oYVQmmkldMM0LTgdo_1V7ty718GEWHU2aNO2qjduCFXOU12E8AIS3ftFn93gUy-fismylIIkdbBS2rsQvGmqubed8suKQPXxhaqovr6Q7OHKBm3jZ0nfeOH8D6zmdfMf_pv8DucplGc</recordid><startdate>20220107</startdate><enddate>20220107</enddate><creator>Qiao, Lu</creator><creator>Long, Run</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3912-8899</orcidid></search><sort><creationdate>20220107</creationdate><title>Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study</title><author>Qiao, Lu ; Long, Run</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-374806137426c774081b2836521f42f6843d14848475acc1357ac4ca7cf4c3563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkaline earth metals</topic><topic>Barium</topic><topic>Broken symmetry</topic><topic>Carrier lifetime</topic><topic>Charge density</topic><topic>Conduction bands</topic><topic>Coupling (molecular)</topic><topic>Current carriers</topic><topic>Dopants</topic><topic>Earth</topic><topic>Free energy</topic><topic>Heat of formation</topic><topic>Molecular dynamics</topic><topic>Open circuit voltage</topic><topic>Optoelectronics</topic><topic>Performance enhancement</topic><topic>Perovskites</topic><topic>Phonons</topic><topic>Photovoltaic cells</topic><topic>Physics</topic><topic>Solar cells</topic><topic>Strontium</topic><topic>Time domain analysis</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiao, Lu</creatorcontrib><creatorcontrib>Long, Run</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiao, Lu</au><au>Long, Run</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study</atitle><jtitle>The Journal of chemical physics</jtitle><date>2022-01-07</date><risdate>2022</risdate><volume>156</volume><issue>1</issue><spage>014702</spage><epage>014702</epage><pages>014702-014702</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Experiments reported that alkaline earth metal dopants greatly prolong carrier lifetime and improve the performance of perovskite solar cells. Using state-of-the-art ab initio time-domain nonadiabatic molecular dynamics (NAMD), we demonstrate that incorporation of alkaline earth metals, such as Sr and Ba, into MAPbI3 (MA = CH3NH3+) lattice at the lead site is energetically favorable due to the largely negative formation energies about −7 eV. The replacement widens the bandgap and increases the open-circuit voltage by creating no trap states. More importantly, the substitution reduces the mixing of electron and hole wave functions by pushing the hole charge density away from the dopant together with no contribution of Sr and Ba to the conduction band edge state, thus decreasing the NA coupling. The high frequency phonons generated by enhanced atomic motions and symmetry breaking accelerate phonon-induced loss of coherence. The synergy of the three factors reduces the nonradiative recombination time by a factor of about 2 in the Sr- and Ba-doped systems with respect to pristine MAPbI3, which occurs over 1 ns and agrees well with the experiment. The study highlights the importance of various factors affecting charge carrier lifetime, establishes the mechanism of reduction of nonradiative electron–hole recombination in perovskites upon alkaline earth metal doping, and provides meaningful insights into the design of high performance of perovskite solar cells and optoelectronics.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0077185</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3912-8899</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2022-01, Vol.156 (1), p.014702-014702
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0077185
source AIP Journals Complete; Alma/SFX Local Collection
subjects Alkaline earth metals
Barium
Broken symmetry
Carrier lifetime
Charge density
Conduction bands
Coupling (molecular)
Current carriers
Dopants
Earth
Free energy
Heat of formation
Molecular dynamics
Open circuit voltage
Optoelectronics
Performance enhancement
Perovskites
Phonons
Photovoltaic cells
Physics
Solar cells
Strontium
Time domain analysis
Wave functions
title Substitutional alkaline earth metals delay nonradiative charge recombination in CH3NH3PbI3 perovskite: A time-domain study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A04%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Substitutional%20alkaline%20earth%20metals%20delay%20nonradiative%20charge%20recombination%20in%20CH3NH3PbI3%20perovskite:%20A%20time-domain%20study&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Qiao,%20Lu&rft.date=2022-01-07&rft.volume=156&rft.issue=1&rft.spage=014702&rft.epage=014702&rft.pages=014702-014702&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0077185&rft_dat=%3Cproquest_cross%3E2618511650%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2614899871&rft_id=info:pmid/&rfr_iscdi=true