Gas velocimetry based on infrared laser-induced fluorescence

A novel method for gas velocity field measurements by means of infrared molecular tagging velocimetry is reported with proof-of-principle demonstration in a carbon dioxide (CO2) axisymmetric turbulent jet. Infrared laser-induced fluorescence utilizes the resonant vibrational energy level transitions...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-12, Vol.33 (12)
Hauptverfasser: Song, Zihao, Wang, Weitian, Zhu, Ning, Chao, Xing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Song, Zihao
Wang, Weitian
Zhu, Ning
Chao, Xing
description A novel method for gas velocity field measurements by means of infrared molecular tagging velocimetry is reported with proof-of-principle demonstration in a carbon dioxide (CO2) axisymmetric turbulent jet. Infrared laser-induced fluorescence utilizes the resonant vibrational energy level transitions of small gas molecules, such as CO2, to “tag” and trace the flow of the molecules by taking subsequent images of the infrared emission. Spectroscopic model of the molecular vibrational energy transfer processes is taken into account to design and optimize the measurement scheme. The infrared images are then analyzed, with detailed consideration of molecular diffusion, lateral velocity, and fluorescence lifetime, to yield quantitative velocity field distribution. The radial velocity distributions in the jet main region, with velocities ranging from 7 to 50 m/s, are obtained and shown to be in excellent agreement with theoretical predication and previous experimental works. Velocity uncertainties are discussed and estimated to be 7.7%, 6.7%, 6.1% for Re = 104, 2 × 10 4 ,   3 × 10 4 (maximum velocity u c = 18.3 , 34.6 , 50.5 m/s), respectively. Spatial resolution along the laser beam is estimated to be 107 μm. To the best of the authors' knowledge, this is the first work of infrared molecular tagging velocimetry. With powerful excitation lasers targeting strong infrared molecular absorption transitions, this technique presents great potential for simultaneous flow-scalar field measurements at much-improved accuracy, spatial and temporal resolution, that can be used for the study of low-speed micro-flows, or instantaneous snapshots of turbulent flows.
doi_str_mv 10.1063/5.0074367
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0074367</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2610998035</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6ec58b632445254d7ae352353856b856d6718c4005e367ac4e7f03a1af4ff1dd3</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4Wtk00y2QUvUmoVCl70HNL8gS3bTU12C_32prTg3cMwb4Yfb4ZHyD2FGQVkz2IGIDlDeUEmFOqmlIh4edQSSkRGr8lNShsAYE2FE_Ky1KnYuy6YduuGeCjWOjlbhL5oex91zLrLm1i2vR1Nnnw3huiScb1xt-TK6y65u3Ofku-3xdf8vVx9Lj_mr6vSsEoOJToj6jWyinNRCW6ldkxUTLBa4DqXRUlrwwGEy49rw530wDTVnntPrWVT8nDy3cXwM7o0qE0YY59PqgopNE0N2W1KHk-UiSGl6LzaxXar40FRUMdwlFDncDL7dGKTaQc9tKH_H7wP8Q9UO-vZLyadcTM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610998035</pqid></control><display><type>article</type><title>Gas velocimetry based on infrared laser-induced fluorescence</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Song, Zihao ; Wang, Weitian ; Zhu, Ning ; Chao, Xing</creator><creatorcontrib>Song, Zihao ; Wang, Weitian ; Zhu, Ning ; Chao, Xing</creatorcontrib><description>A novel method for gas velocity field measurements by means of infrared molecular tagging velocimetry is reported with proof-of-principle demonstration in a carbon dioxide (CO2) axisymmetric turbulent jet. Infrared laser-induced fluorescence utilizes the resonant vibrational energy level transitions of small gas molecules, such as CO2, to “tag” and trace the flow of the molecules by taking subsequent images of the infrared emission. Spectroscopic model of the molecular vibrational energy transfer processes is taken into account to design and optimize the measurement scheme. The infrared images are then analyzed, with detailed consideration of molecular diffusion, lateral velocity, and fluorescence lifetime, to yield quantitative velocity field distribution. The radial velocity distributions in the jet main region, with velocities ranging from 7 to 50 m/s, are obtained and shown to be in excellent agreement with theoretical predication and previous experimental works. Velocity uncertainties are discussed and estimated to be 7.7%, 6.7%, 6.1% for Re = 104, 2 × 10 4 ,   3 × 10 4 (maximum velocity u c = 18.3 , 34.6 , 50.5 m/s), respectively. Spatial resolution along the laser beam is estimated to be 107 μm. To the best of the authors' knowledge, this is the first work of infrared molecular tagging velocimetry. With powerful excitation lasers targeting strong infrared molecular absorption transitions, this technique presents great potential for simultaneous flow-scalar field measurements at much-improved accuracy, spatial and temporal resolution, that can be used for the study of low-speed micro-flows, or instantaneous snapshots of turbulent flows.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0074367</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Carbon dioxide ; Design optimization ; Energy levels ; Energy transfer ; Fluid dynamics ; Infrared analysis ; Infrared imagery ; Infrared lasers ; Laser beams ; Laser induced fluorescence ; Lasers ; Low speed ; Molecular absorption ; Molecular diffusion ; Molecular tagging velocimetry ; Physics ; Radial velocity ; Scalars ; Spatial resolution ; Temporal resolution ; Turbulent jets ; Velocity ; Velocity distribution</subject><ispartof>Physics of fluids (1994), 2021-12, Vol.33 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6ec58b632445254d7ae352353856b856d6718c4005e367ac4e7f03a1af4ff1dd3</citedby><cites>FETCH-LOGICAL-c327t-6ec58b632445254d7ae352353856b856d6718c4005e367ac4e7f03a1af4ff1dd3</cites><orcidid>0000-0003-2574-4148 ; 0000-0003-0152-4634 ; 0000-0001-8004-9792 ; 0000-0002-1293-5837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4510,27923,27924</link.rule.ids></links><search><creatorcontrib>Song, Zihao</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhu, Ning</creatorcontrib><creatorcontrib>Chao, Xing</creatorcontrib><title>Gas velocimetry based on infrared laser-induced fluorescence</title><title>Physics of fluids (1994)</title><description>A novel method for gas velocity field measurements by means of infrared molecular tagging velocimetry is reported with proof-of-principle demonstration in a carbon dioxide (CO2) axisymmetric turbulent jet. Infrared laser-induced fluorescence utilizes the resonant vibrational energy level transitions of small gas molecules, such as CO2, to “tag” and trace the flow of the molecules by taking subsequent images of the infrared emission. Spectroscopic model of the molecular vibrational energy transfer processes is taken into account to design and optimize the measurement scheme. The infrared images are then analyzed, with detailed consideration of molecular diffusion, lateral velocity, and fluorescence lifetime, to yield quantitative velocity field distribution. The radial velocity distributions in the jet main region, with velocities ranging from 7 to 50 m/s, are obtained and shown to be in excellent agreement with theoretical predication and previous experimental works. Velocity uncertainties are discussed and estimated to be 7.7%, 6.7%, 6.1% for Re = 104, 2 × 10 4 ,   3 × 10 4 (maximum velocity u c = 18.3 , 34.6 , 50.5 m/s), respectively. Spatial resolution along the laser beam is estimated to be 107 μm. To the best of the authors' knowledge, this is the first work of infrared molecular tagging velocimetry. With powerful excitation lasers targeting strong infrared molecular absorption transitions, this technique presents great potential for simultaneous flow-scalar field measurements at much-improved accuracy, spatial and temporal resolution, that can be used for the study of low-speed micro-flows, or instantaneous snapshots of turbulent flows.</description><subject>Carbon dioxide</subject><subject>Design optimization</subject><subject>Energy levels</subject><subject>Energy transfer</subject><subject>Fluid dynamics</subject><subject>Infrared analysis</subject><subject>Infrared imagery</subject><subject>Infrared lasers</subject><subject>Laser beams</subject><subject>Laser induced fluorescence</subject><subject>Lasers</subject><subject>Low speed</subject><subject>Molecular absorption</subject><subject>Molecular diffusion</subject><subject>Molecular tagging velocimetry</subject><subject>Physics</subject><subject>Radial velocity</subject><subject>Scalars</subject><subject>Spatial resolution</subject><subject>Temporal resolution</subject><subject>Turbulent jets</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv8GCJ4Wtk00y2QUvUmoVCl70HNL8gS3bTU12C_32prTg3cMwb4Yfb4ZHyD2FGQVkz2IGIDlDeUEmFOqmlIh4edQSSkRGr8lNShsAYE2FE_Ky1KnYuy6YduuGeCjWOjlbhL5oex91zLrLm1i2vR1Nnnw3huiScb1xt-TK6y65u3Ofku-3xdf8vVx9Lj_mr6vSsEoOJToj6jWyinNRCW6ldkxUTLBa4DqXRUlrwwGEy49rw530wDTVnntPrWVT8nDy3cXwM7o0qE0YY59PqgopNE0N2W1KHk-UiSGl6LzaxXar40FRUMdwlFDncDL7dGKTaQc9tKH_H7wP8Q9UO-vZLyadcTM</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Song, Zihao</creator><creator>Wang, Weitian</creator><creator>Zhu, Ning</creator><creator>Chao, Xing</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2574-4148</orcidid><orcidid>https://orcid.org/0000-0003-0152-4634</orcidid><orcidid>https://orcid.org/0000-0001-8004-9792</orcidid><orcidid>https://orcid.org/0000-0002-1293-5837</orcidid></search><sort><creationdate>202112</creationdate><title>Gas velocimetry based on infrared laser-induced fluorescence</title><author>Song, Zihao ; Wang, Weitian ; Zhu, Ning ; Chao, Xing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6ec58b632445254d7ae352353856b856d6718c4005e367ac4e7f03a1af4ff1dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Carbon dioxide</topic><topic>Design optimization</topic><topic>Energy levels</topic><topic>Energy transfer</topic><topic>Fluid dynamics</topic><topic>Infrared analysis</topic><topic>Infrared imagery</topic><topic>Infrared lasers</topic><topic>Laser beams</topic><topic>Laser induced fluorescence</topic><topic>Lasers</topic><topic>Low speed</topic><topic>Molecular absorption</topic><topic>Molecular diffusion</topic><topic>Molecular tagging velocimetry</topic><topic>Physics</topic><topic>Radial velocity</topic><topic>Scalars</topic><topic>Spatial resolution</topic><topic>Temporal resolution</topic><topic>Turbulent jets</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Zihao</creatorcontrib><creatorcontrib>Wang, Weitian</creatorcontrib><creatorcontrib>Zhu, Ning</creatorcontrib><creatorcontrib>Chao, Xing</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Zihao</au><au>Wang, Weitian</au><au>Zhu, Ning</au><au>Chao, Xing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gas velocimetry based on infrared laser-induced fluorescence</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-12</date><risdate>2021</risdate><volume>33</volume><issue>12</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>A novel method for gas velocity field measurements by means of infrared molecular tagging velocimetry is reported with proof-of-principle demonstration in a carbon dioxide (CO2) axisymmetric turbulent jet. Infrared laser-induced fluorescence utilizes the resonant vibrational energy level transitions of small gas molecules, such as CO2, to “tag” and trace the flow of the molecules by taking subsequent images of the infrared emission. Spectroscopic model of the molecular vibrational energy transfer processes is taken into account to design and optimize the measurement scheme. The infrared images are then analyzed, with detailed consideration of molecular diffusion, lateral velocity, and fluorescence lifetime, to yield quantitative velocity field distribution. The radial velocity distributions in the jet main region, with velocities ranging from 7 to 50 m/s, are obtained and shown to be in excellent agreement with theoretical predication and previous experimental works. Velocity uncertainties are discussed and estimated to be 7.7%, 6.7%, 6.1% for Re = 104, 2 × 10 4 ,   3 × 10 4 (maximum velocity u c = 18.3 , 34.6 , 50.5 m/s), respectively. Spatial resolution along the laser beam is estimated to be 107 μm. To the best of the authors' knowledge, this is the first work of infrared molecular tagging velocimetry. With powerful excitation lasers targeting strong infrared molecular absorption transitions, this technique presents great potential for simultaneous flow-scalar field measurements at much-improved accuracy, spatial and temporal resolution, that can be used for the study of low-speed micro-flows, or instantaneous snapshots of turbulent flows.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0074367</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2574-4148</orcidid><orcidid>https://orcid.org/0000-0003-0152-4634</orcidid><orcidid>https://orcid.org/0000-0001-8004-9792</orcidid><orcidid>https://orcid.org/0000-0002-1293-5837</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-12, Vol.33 (12)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0074367
source AIP Journals Complete; Alma/SFX Local Collection
subjects Carbon dioxide
Design optimization
Energy levels
Energy transfer
Fluid dynamics
Infrared analysis
Infrared imagery
Infrared lasers
Laser beams
Laser induced fluorescence
Lasers
Low speed
Molecular absorption
Molecular diffusion
Molecular tagging velocimetry
Physics
Radial velocity
Scalars
Spatial resolution
Temporal resolution
Turbulent jets
Velocity
Velocity distribution
title Gas velocimetry based on infrared laser-induced fluorescence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A36%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gas%20velocimetry%20based%20on%20infrared%20laser-induced%20fluorescence&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Song,%20Zihao&rft.date=2021-12&rft.volume=33&rft.issue=12&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0074367&rft_dat=%3Cproquest_cross%3E2610998035%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610998035&rft_id=info:pmid/&rfr_iscdi=true