Thermal gradient effect on helium and self-interstitial transport in tungsten

First-wall materials in a fusion reactor are expected to withstand harsh conditions, with high heat and particle fluxes that modify the materials microstructure. These fluxes will create strong gradients of temperature and concentration of diverse species. Besides the He ash and the hydrogenic speci...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-12, Vol.130 (21)
Hauptverfasser: Martínez, Enrique, Mathew, Nithin, Perez, Danny, Blondel, Sophie, Dasgupta, Dwaipayan, Wirth, Brian D., Maroudas, Dimitrios
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 21
container_start_page
container_title Journal of applied physics
container_volume 130
creator Martínez, Enrique
Mathew, Nithin
Perez, Danny
Blondel, Sophie
Dasgupta, Dwaipayan
Wirth, Brian D.
Maroudas, Dimitrios
description First-wall materials in a fusion reactor are expected to withstand harsh conditions, with high heat and particle fluxes that modify the materials microstructure. These fluxes will create strong gradients of temperature and concentration of diverse species. Besides the He ash and the hydrogenic species, neutron particles generated in the fusion reaction will collide with the material creating intrinsic defects, such as vacancies, self-interstitials atoms (SIAs), and clusters of such point defects. These defects and the He atoms will then migrate in the presence of the aforementioned gradients. In this study, we use nonequilibrium molecular dynamics to analyze the transport of He and SIAs in the presence of a thermal gradient in tungsten. We observe that, in all cases, the defects and impurity atoms tend to migrate toward the hot regions of the tungsten sample. The resulting species concentration profiles are exponential distributions, rising toward the hot regions of the sample, in agreement with irreversible thermodynamics analysis. For both He atoms and SIAs, we find that the resulting species flux is directed opposite to the heat flux, indicating that species transport is governed by a Soret effect (thermal-gradient-driven diffusion) characterized by a negative heat of transport that drives species diffusion uphill (from the cooler to the hot regions of the sample). We demonstrate that the steady-state species profiles obtained accounting for the Soret effect vary significantly from those where temperature-gradient-driven transport is not considered and discuss the implications of such a Soret effect on the response to plasma exposure of plasma-facing tungsten.
doi_str_mv 10.1063/5.0071935
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0071935</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2605733325</sourcerecordid><originalsourceid>FETCH-LOGICAL-c389t-a762075515143e1901d17aca1d6f0eb5ebc2088cbcdfd3c91b9e1e708c87b82f3</originalsourceid><addsrcrecordid>eNp90E1LAzEQBuAgCtaPg_9g0ZPC1snGNMlRil-geNFzyGYnbaRNapIK_ntTKnoQPM3lYeadl5ATCmMKE3bJxwCCKsZ3yIiCVK3gHHbJCKCjrVRC7ZODnN8AKJVMjcjTyxzT0iyaWTKDx1AadA5taWJo5rjw62VjwtBkXLjWh4IpF1989SWZkFcxlcaHpqzDLBcMR2TPmUXG4-95SF5vb16m9-3j893D9PqxtUyq0hox6aAGo5xeMaQK6ECFsYYOEwfYc-xtB1La3g5uYFbRXiFFAdJK0cvOsUNyut0baxydrS9o5zaGUJPr-hiTAio626JViu9rzEW_xXUKNZfuJsAFY6zjVZ1vlU0x54ROr5JfmvSpKehNpZrr70qrvdjazUVTfAw_-COmX6hXg_sP_938BTnkhGo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2605733325</pqid></control><display><type>article</type><title>Thermal gradient effect on helium and self-interstitial transport in tungsten</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Martínez, Enrique ; Mathew, Nithin ; Perez, Danny ; Blondel, Sophie ; Dasgupta, Dwaipayan ; Wirth, Brian D. ; Maroudas, Dimitrios</creator><creatorcontrib>Martínez, Enrique ; Mathew, Nithin ; Perez, Danny ; Blondel, Sophie ; Dasgupta, Dwaipayan ; Wirth, Brian D. ; Maroudas, Dimitrios</creatorcontrib><description>First-wall materials in a fusion reactor are expected to withstand harsh conditions, with high heat and particle fluxes that modify the materials microstructure. These fluxes will create strong gradients of temperature and concentration of diverse species. Besides the He ash and the hydrogenic species, neutron particles generated in the fusion reaction will collide with the material creating intrinsic defects, such as vacancies, self-interstitials atoms (SIAs), and clusters of such point defects. These defects and the He atoms will then migrate in the presence of the aforementioned gradients. In this study, we use nonequilibrium molecular dynamics to analyze the transport of He and SIAs in the presence of a thermal gradient in tungsten. We observe that, in all cases, the defects and impurity atoms tend to migrate toward the hot regions of the tungsten sample. The resulting species concentration profiles are exponential distributions, rising toward the hot regions of the sample, in agreement with irreversible thermodynamics analysis. For both He atoms and SIAs, we find that the resulting species flux is directed opposite to the heat flux, indicating that species transport is governed by a Soret effect (thermal-gradient-driven diffusion) characterized by a negative heat of transport that drives species diffusion uphill (from the cooler to the hot regions of the sample). We demonstrate that the steady-state species profiles obtained accounting for the Soret effect vary significantly from those where temperature-gradient-driven transport is not considered and discuss the implications of such a Soret effect on the response to plasma exposure of plasma-facing tungsten.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0071935</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Concentration gradient ; Diffusion effects ; Heat ; Heat flux ; Helium ; Interstitials ; Molecular dynamics ; Point defects ; Self-interstitials ; Species diffusion ; Temperature gradients ; Tungsten</subject><ispartof>Journal of applied physics, 2021-12, Vol.130 (21)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c389t-a762075515143e1901d17aca1d6f0eb5ebc2088cbcdfd3c91b9e1e708c87b82f3</citedby><cites>FETCH-LOGICAL-c389t-a762075515143e1901d17aca1d6f0eb5ebc2088cbcdfd3c91b9e1e708c87b82f3</cites><orcidid>0000-0003-3028-5249 ; 0000-0001-9405-922X ; 0000-0001-9297-8839 ; 0000-0002-2690-2622 ; 0000-0002-0395-0285 ; 0000000226902622 ; 0000000203950285 ; 000000019405922X ; 0000000330285249 ; 0000000192978839</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0071935$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,776,780,790,881,4498,27901,27902,76126</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1833870$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Martínez, Enrique</creatorcontrib><creatorcontrib>Mathew, Nithin</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Blondel, Sophie</creatorcontrib><creatorcontrib>Dasgupta, Dwaipayan</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Maroudas, Dimitrios</creatorcontrib><title>Thermal gradient effect on helium and self-interstitial transport in tungsten</title><title>Journal of applied physics</title><description>First-wall materials in a fusion reactor are expected to withstand harsh conditions, with high heat and particle fluxes that modify the materials microstructure. These fluxes will create strong gradients of temperature and concentration of diverse species. Besides the He ash and the hydrogenic species, neutron particles generated in the fusion reaction will collide with the material creating intrinsic defects, such as vacancies, self-interstitials atoms (SIAs), and clusters of such point defects. These defects and the He atoms will then migrate in the presence of the aforementioned gradients. In this study, we use nonequilibrium molecular dynamics to analyze the transport of He and SIAs in the presence of a thermal gradient in tungsten. We observe that, in all cases, the defects and impurity atoms tend to migrate toward the hot regions of the tungsten sample. The resulting species concentration profiles are exponential distributions, rising toward the hot regions of the sample, in agreement with irreversible thermodynamics analysis. For both He atoms and SIAs, we find that the resulting species flux is directed opposite to the heat flux, indicating that species transport is governed by a Soret effect (thermal-gradient-driven diffusion) characterized by a negative heat of transport that drives species diffusion uphill (from the cooler to the hot regions of the sample). We demonstrate that the steady-state species profiles obtained accounting for the Soret effect vary significantly from those where temperature-gradient-driven transport is not considered and discuss the implications of such a Soret effect on the response to plasma exposure of plasma-facing tungsten.</description><subject>Concentration gradient</subject><subject>Diffusion effects</subject><subject>Heat</subject><subject>Heat flux</subject><subject>Helium</subject><subject>Interstitials</subject><subject>Molecular dynamics</subject><subject>Point defects</subject><subject>Self-interstitials</subject><subject>Species diffusion</subject><subject>Temperature gradients</subject><subject>Tungsten</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90E1LAzEQBuAgCtaPg_9g0ZPC1snGNMlRil-geNFzyGYnbaRNapIK_ntTKnoQPM3lYeadl5ATCmMKE3bJxwCCKsZ3yIiCVK3gHHbJCKCjrVRC7ZODnN8AKJVMjcjTyxzT0iyaWTKDx1AadA5taWJo5rjw62VjwtBkXLjWh4IpF1989SWZkFcxlcaHpqzDLBcMR2TPmUXG4-95SF5vb16m9-3j893D9PqxtUyq0hox6aAGo5xeMaQK6ECFsYYOEwfYc-xtB1La3g5uYFbRXiFFAdJK0cvOsUNyut0baxydrS9o5zaGUJPr-hiTAio626JViu9rzEW_xXUKNZfuJsAFY6zjVZ1vlU0x54ROr5JfmvSpKehNpZrr70qrvdjazUVTfAw_-COmX6hXg_sP_938BTnkhGo</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Martínez, Enrique</creator><creator>Mathew, Nithin</creator><creator>Perez, Danny</creator><creator>Blondel, Sophie</creator><creator>Dasgupta, Dwaipayan</creator><creator>Wirth, Brian D.</creator><creator>Maroudas, Dimitrios</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0001-9405-922X</orcidid><orcidid>https://orcid.org/0000-0001-9297-8839</orcidid><orcidid>https://orcid.org/0000-0002-2690-2622</orcidid><orcidid>https://orcid.org/0000-0002-0395-0285</orcidid><orcidid>https://orcid.org/0000000226902622</orcidid><orcidid>https://orcid.org/0000000203950285</orcidid><orcidid>https://orcid.org/000000019405922X</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid><orcidid>https://orcid.org/0000000192978839</orcidid></search><sort><creationdate>20211207</creationdate><title>Thermal gradient effect on helium and self-interstitial transport in tungsten</title><author>Martínez, Enrique ; Mathew, Nithin ; Perez, Danny ; Blondel, Sophie ; Dasgupta, Dwaipayan ; Wirth, Brian D. ; Maroudas, Dimitrios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c389t-a762075515143e1901d17aca1d6f0eb5ebc2088cbcdfd3c91b9e1e708c87b82f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Concentration gradient</topic><topic>Diffusion effects</topic><topic>Heat</topic><topic>Heat flux</topic><topic>Helium</topic><topic>Interstitials</topic><topic>Molecular dynamics</topic><topic>Point defects</topic><topic>Self-interstitials</topic><topic>Species diffusion</topic><topic>Temperature gradients</topic><topic>Tungsten</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Martínez, Enrique</creatorcontrib><creatorcontrib>Mathew, Nithin</creatorcontrib><creatorcontrib>Perez, Danny</creatorcontrib><creatorcontrib>Blondel, Sophie</creatorcontrib><creatorcontrib>Dasgupta, Dwaipayan</creatorcontrib><creatorcontrib>Wirth, Brian D.</creatorcontrib><creatorcontrib>Maroudas, Dimitrios</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martínez, Enrique</au><au>Mathew, Nithin</au><au>Perez, Danny</au><au>Blondel, Sophie</au><au>Dasgupta, Dwaipayan</au><au>Wirth, Brian D.</au><au>Maroudas, Dimitrios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal gradient effect on helium and self-interstitial transport in tungsten</atitle><jtitle>Journal of applied physics</jtitle><date>2021-12-07</date><risdate>2021</risdate><volume>130</volume><issue>21</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>First-wall materials in a fusion reactor are expected to withstand harsh conditions, with high heat and particle fluxes that modify the materials microstructure. These fluxes will create strong gradients of temperature and concentration of diverse species. Besides the He ash and the hydrogenic species, neutron particles generated in the fusion reaction will collide with the material creating intrinsic defects, such as vacancies, self-interstitials atoms (SIAs), and clusters of such point defects. These defects and the He atoms will then migrate in the presence of the aforementioned gradients. In this study, we use nonequilibrium molecular dynamics to analyze the transport of He and SIAs in the presence of a thermal gradient in tungsten. We observe that, in all cases, the defects and impurity atoms tend to migrate toward the hot regions of the tungsten sample. The resulting species concentration profiles are exponential distributions, rising toward the hot regions of the sample, in agreement with irreversible thermodynamics analysis. For both He atoms and SIAs, we find that the resulting species flux is directed opposite to the heat flux, indicating that species transport is governed by a Soret effect (thermal-gradient-driven diffusion) characterized by a negative heat of transport that drives species diffusion uphill (from the cooler to the hot regions of the sample). We demonstrate that the steady-state species profiles obtained accounting for the Soret effect vary significantly from those where temperature-gradient-driven transport is not considered and discuss the implications of such a Soret effect on the response to plasma exposure of plasma-facing tungsten.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0071935</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-3028-5249</orcidid><orcidid>https://orcid.org/0000-0001-9405-922X</orcidid><orcidid>https://orcid.org/0000-0001-9297-8839</orcidid><orcidid>https://orcid.org/0000-0002-2690-2622</orcidid><orcidid>https://orcid.org/0000-0002-0395-0285</orcidid><orcidid>https://orcid.org/0000000226902622</orcidid><orcidid>https://orcid.org/0000000203950285</orcidid><orcidid>https://orcid.org/000000019405922X</orcidid><orcidid>https://orcid.org/0000000330285249</orcidid><orcidid>https://orcid.org/0000000192978839</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-12, Vol.130 (21)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0071935
source AIP Journals Complete; Alma/SFX Local Collection
subjects Concentration gradient
Diffusion effects
Heat
Heat flux
Helium
Interstitials
Molecular dynamics
Point defects
Self-interstitials
Species diffusion
Temperature gradients
Tungsten
title Thermal gradient effect on helium and self-interstitial transport in tungsten
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T14%3A44%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20gradient%20effect%20on%20helium%20and%20self-interstitial%20transport%20in%20tungsten&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Mart%C3%ADnez,%20Enrique&rft.date=2021-12-07&rft.volume=130&rft.issue=21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0071935&rft_dat=%3Cproquest_cross%3E2605733325%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2605733325&rft_id=info:pmid/&rfr_iscdi=true