On the Hochschild cohomology of universal enveloping associative conformal algebras
We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-12, Vol.62 (12) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 12 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Alhussein, H. Kolesnikov, P. |
description | We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing. |
doi_str_mv | 10.1063/5.0065581 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0065581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608238077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmt9JspRirVDoQl2HJJPpTJlOxmRa6NsbacG9q7s4H_dyDwD3GM0wKukznyFUci7xBZhgJFUhSi4vwQQhQgrCpLwGNyltEcJYMjYBH-sejo2Hy-Ca5Jq2q6ALTdiFLmyOMNRw37cHH5PpoO8PvgtD22-gSSm41ow5yryvQ9xlYLqNt9GkW3BVmy75u_Ocgq_F6-d8WazWb-_zl1XhKBFjIZk0JbeMYasEkaUiyhNhRUV5RVktcogVt66UvFJKWVJbyirBCLO-EpbSKXg47R1i-N77NOpt2Mc-n9SkRJJQiYTI6vGkXAwpRV_rIbY7E48aI_3bmeb63Fm2TyebXDvm90L_P3wI8Q_qoarpD1wcej4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608238077</pqid></control><display><type>article</type><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Alhussein, H. ; Kolesnikov, P.</creator><creatorcontrib>Alhussein, H. ; Kolesnikov, P.</creatorcontrib><description>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0065581</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Homology ; Physics</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</citedby><cites>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</cites><orcidid>0000-0002-7534-1534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0065581$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><title>Journal of mathematical physics</title><description>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</description><subject>Algebra</subject><subject>Homology</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmt9JspRirVDoQl2HJJPpTJlOxmRa6NsbacG9q7s4H_dyDwD3GM0wKukznyFUci7xBZhgJFUhSi4vwQQhQgrCpLwGNyltEcJYMjYBH-sejo2Hy-Ca5Jq2q6ALTdiFLmyOMNRw37cHH5PpoO8PvgtD22-gSSm41ow5yryvQ9xlYLqNt9GkW3BVmy75u_Ocgq_F6-d8WazWb-_zl1XhKBFjIZk0JbeMYasEkaUiyhNhRUV5RVktcogVt66UvFJKWVJbyirBCLO-EpbSKXg47R1i-N77NOpt2Mc-n9SkRJJQiYTI6vGkXAwpRV_rIbY7E48aI_3bmeb63Fm2TyebXDvm90L_P3wI8Q_qoarpD1wcej4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Alhussein, H.</creator><creator>Kolesnikov, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid></search><sort><creationdate>20211201</creationdate><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><author>Alhussein, H. ; Kolesnikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, H.</au><au>Kolesnikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hochschild cohomology of universal enveloping associative conformal algebras</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065581</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-12, Vol.62 (12) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0065581 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algebra Homology Physics |
title | On the Hochschild cohomology of universal enveloping associative conformal algebras |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hochschild%20cohomology%20of%20universal%20enveloping%20associative%20conformal%20algebras&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Alhussein,%20H.&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0065581&rft_dat=%3Cproquest_cross%3E2608238077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608238077&rft_id=info:pmid/&rfr_iscdi=true |