On the Hochschild cohomology of universal enveloping associative conformal algebras

We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-12, Vol.62 (12)
Hauptverfasser: Alhussein, H., Kolesnikov, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Alhussein, H.
Kolesnikov, P.
description We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.
doi_str_mv 10.1063/5.0065581
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0065581</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2608238077</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</originalsourceid><addsrcrecordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmt9JspRirVDoQl2HJJPpTJlOxmRa6NsbacG9q7s4H_dyDwD3GM0wKukznyFUci7xBZhgJFUhSi4vwQQhQgrCpLwGNyltEcJYMjYBH-sejo2Hy-Ca5Jq2q6ALTdiFLmyOMNRw37cHH5PpoO8PvgtD22-gSSm41ow5yryvQ9xlYLqNt9GkW3BVmy75u_Ocgq_F6-d8WazWb-_zl1XhKBFjIZk0JbeMYasEkaUiyhNhRUV5RVktcogVt66UvFJKWVJbyirBCLO-EpbSKXg47R1i-N77NOpt2Mc-n9SkRJJQiYTI6vGkXAwpRV_rIbY7E48aI_3bmeb63Fm2TyebXDvm90L_P3wI8Q_qoarpD1wcej4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2608238077</pqid></control><display><type>article</type><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Alhussein, H. ; Kolesnikov, P.</creator><creatorcontrib>Alhussein, H. ; Kolesnikov, P.</creatorcontrib><description>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0065581</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Algebra ; Homology ; Physics</subject><ispartof>Journal of mathematical physics, 2021-12, Vol.62 (12)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</citedby><cites>FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</cites><orcidid>0000-0002-7534-1534</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0065581$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,777,781,791,4498,27905,27906,76133</link.rule.ids></links><search><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><title>Journal of mathematical physics</title><description>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</description><subject>Algebra</subject><subject>Homology</subject><subject>Physics</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0M1KAzEUBeAgCtbqwjcIuFKYmt9JspRirVDoQl2HJJPpTJlOxmRa6NsbacG9q7s4H_dyDwD3GM0wKukznyFUci7xBZhgJFUhSi4vwQQhQgrCpLwGNyltEcJYMjYBH-sejo2Hy-Ca5Jq2q6ALTdiFLmyOMNRw37cHH5PpoO8PvgtD22-gSSm41ow5yryvQ9xlYLqNt9GkW3BVmy75u_Ocgq_F6-d8WazWb-_zl1XhKBFjIZk0JbeMYasEkaUiyhNhRUV5RVktcogVt66UvFJKWVJbyirBCLO-EpbSKXg47R1i-N77NOpt2Mc-n9SkRJJQiYTI6vGkXAwpRV_rIbY7E48aI_3bmeb63Fm2TyebXDvm90L_P3wI8Q_qoarpD1wcej4</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Alhussein, H.</creator><creator>Kolesnikov, P.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid></search><sort><creationdate>20211201</creationdate><title>On the Hochschild cohomology of universal enveloping associative conformal algebras</title><author>Alhussein, H. ; Kolesnikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-848a65b441b97286929e27b7d35d34f7a65195bc685d999b2fb34d7424bed7b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algebra</topic><topic>Homology</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, H.</creatorcontrib><creatorcontrib>Kolesnikov, P.</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, H.</au><au>Kolesnikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Hochschild cohomology of universal enveloping associative conformal algebras</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>62</volume><issue>12</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>We calculate the second Hochschild cohomology group with scalar coefficients for the universal enveloping associative conformal algebra of the Virasoro conformal algebra relative to the locality N = 3 on the generator. For the associative conformal envelope corresponding to smaller locality N = 2, i.e., for the Weyl conformal algebra, we show that all Hochschild cohomologies with scalar coefficients are vanishing.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0065581</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-7534-1534</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-12, Vol.62 (12)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0065581
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algebra
Homology
Physics
title On the Hochschild cohomology of universal enveloping associative conformal algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Hochschild%20cohomology%20of%20universal%20enveloping%20associative%20conformal%20algebras&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Alhussein,%20H.&rft.date=2021-12-01&rft.volume=62&rft.issue=12&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0065581&rft_dat=%3Cproquest_cross%3E2608238077%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2608238077&rft_id=info:pmid/&rfr_iscdi=true