A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam

A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam with gradient cavities is presented and its sensing properties are investigated using the finite element method. The proposed sensing structure, which can be made from either isotropic or anisotropic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2022-01, Vol.131 (2)
Hauptverfasser: Li, Ke-Yu, Sun, Xiao-Wei, Song, Ting, Wen, Xiao-Dong, Wang, Yi-Wen, Liu, Xi-Xuan, Liu, Zi-Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Journal of applied physics
container_volume 131
creator Li, Ke-Yu
Sun, Xiao-Wei
Song, Ting
Wen, Xiao-Dong
Wang, Yi-Wen
Liu, Xi-Xuan
Liu, Zi-Jiang
description A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam with gradient cavities is presented and its sensing properties are investigated using the finite element method. The proposed sensing structure, which can be made from either isotropic or anisotropic materials, can have excellent sensing properties that are designed via geometric optimization. We investigate the influences of various solution concentrations on electromagnetic and elastic wave transmission spectra. The results demonstrate that the introduction of gradient cavities can enable the system to avoid lattice mutation and reduce energy loss, thereby concentrating light and sound energy in the slot and holes, enhancing interactions between the electromagnetic and elastic waves, and improving sensitivity. It is worth noting that the sensing characteristics are related to the electric field distribution in the light sensor. That is, the sensitivity is better when more electric energy is distributed in the liquid-filled slot and holes. The sensitivity can reach 238.1 nm/RIU. The acoustic sensing properties are related to the solid–liquid interaction. This is especially true for the modal sensing characteristics, where the acoustic energy is concentrated on the solid–liquid interface. Therefore, greater interaction strength implies better sensitivity. The acoustic sensitivity can reach 3167 kHz/ms−1. The proposed structure provides acoustic and optical cross-checks for different types of solutions. This helps us to improve sensing accuracy and reduce sensing uncertainty.
doi_str_mv 10.1063/5.0064089
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0064089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2618367084</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f176f517a7220aee058dcdbc3858146acb31155a8a1d42fdf7a3179042e7338e3</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQ-SZpmvQ4hv9g4EXPJU3TNaNLtiQV9-2tdmdPz-XH-_A-CN0SWBAo2CNfABQ5yPIMzcgYmeAcztEMgJJMlqK8RFcxbgEIkaycIb3End10WTQu2mS_bDri3h4G22DtnTYuBZWsdxNwGxxTGHQagsG1iqbB3mGF953_9s5qrMMxJtXj2PuEnXK-Nmp3jS5a1Udzc8o5-nx--li9Zuv3l7fVcp1pWtKUtUQULSdCCUpBGQNcNrqpNZNckrxQumaEcK6kIk1O26YVihFRQk6NYEwaNkd309198IfBxFRt_RDcWFnRYny3ECDzUd1PSgcfYzBttQ92p8KxIlD9bljx6rThaB8mG7VNfzv8g38ADRRx-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2618367084</pqid></control><display><type>article</type><title>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam</title><source>American Institute of Physics (AIP) Journals</source><source>Alma/SFX Local Collection</source><creator>Li, Ke-Yu ; Sun, Xiao-Wei ; Song, Ting ; Wen, Xiao-Dong ; Wang, Yi-Wen ; Liu, Xi-Xuan ; Liu, Zi-Jiang</creator><creatorcontrib>Li, Ke-Yu ; Sun, Xiao-Wei ; Song, Ting ; Wen, Xiao-Dong ; Wang, Yi-Wen ; Liu, Xi-Xuan ; Liu, Zi-Jiang</creatorcontrib><description>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam with gradient cavities is presented and its sensing properties are investigated using the finite element method. The proposed sensing structure, which can be made from either isotropic or anisotropic materials, can have excellent sensing properties that are designed via geometric optimization. We investigate the influences of various solution concentrations on electromagnetic and elastic wave transmission spectra. The results demonstrate that the introduction of gradient cavities can enable the system to avoid lattice mutation and reduce energy loss, thereby concentrating light and sound energy in the slot and holes, enhancing interactions between the electromagnetic and elastic waves, and improving sensitivity. It is worth noting that the sensing characteristics are related to the electric field distribution in the light sensor. That is, the sensitivity is better when more electric energy is distributed in the liquid-filled slot and holes. The sensitivity can reach 238.1 nm/RIU. The acoustic sensing properties are related to the solid–liquid interaction. This is especially true for the modal sensing characteristics, where the acoustic energy is concentrated on the solid–liquid interface. Therefore, greater interaction strength implies better sensitivity. The acoustic sensitivity can reach 3167 kHz/ms−1. The proposed structure provides acoustic and optical cross-checks for different types of solutions. This helps us to improve sensing accuracy and reduce sensing uncertainty.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0064089</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Acoustic properties ; Acoustics ; Applied physics ; Concentration gradient ; Crystal structure ; Elastic waves ; Electric fields ; Energy dissipation ; Finite element method ; Liquid-solid interfaces ; Mutation ; Optimization ; Sensitivity</subject><ispartof>Journal of applied physics, 2022-01, Vol.131 (2)</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f176f517a7220aee058dcdbc3858146acb31155a8a1d42fdf7a3179042e7338e3</citedby><cites>FETCH-LOGICAL-c292t-f176f517a7220aee058dcdbc3858146acb31155a8a1d42fdf7a3179042e7338e3</cites><orcidid>0000-0003-4816-4525</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0064089$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Li, Ke-Yu</creatorcontrib><creatorcontrib>Sun, Xiao-Wei</creatorcontrib><creatorcontrib>Song, Ting</creatorcontrib><creatorcontrib>Wen, Xiao-Dong</creatorcontrib><creatorcontrib>Wang, Yi-Wen</creatorcontrib><creatorcontrib>Liu, Xi-Xuan</creatorcontrib><creatorcontrib>Liu, Zi-Jiang</creatorcontrib><title>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam</title><title>Journal of applied physics</title><description>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam with gradient cavities is presented and its sensing properties are investigated using the finite element method. The proposed sensing structure, which can be made from either isotropic or anisotropic materials, can have excellent sensing properties that are designed via geometric optimization. We investigate the influences of various solution concentrations on electromagnetic and elastic wave transmission spectra. The results demonstrate that the introduction of gradient cavities can enable the system to avoid lattice mutation and reduce energy loss, thereby concentrating light and sound energy in the slot and holes, enhancing interactions between the electromagnetic and elastic waves, and improving sensitivity. It is worth noting that the sensing characteristics are related to the electric field distribution in the light sensor. That is, the sensitivity is better when more electric energy is distributed in the liquid-filled slot and holes. The sensitivity can reach 238.1 nm/RIU. The acoustic sensing properties are related to the solid–liquid interaction. This is especially true for the modal sensing characteristics, where the acoustic energy is concentrated on the solid–liquid interface. Therefore, greater interaction strength implies better sensitivity. The acoustic sensitivity can reach 3167 kHz/ms−1. The proposed structure provides acoustic and optical cross-checks for different types of solutions. This helps us to improve sensing accuracy and reduce sensing uncertainty.</description><subject>Acoustic properties</subject><subject>Acoustics</subject><subject>Applied physics</subject><subject>Concentration gradient</subject><subject>Crystal structure</subject><subject>Elastic waves</subject><subject>Electric fields</subject><subject>Energy dissipation</subject><subject>Finite element method</subject><subject>Liquid-solid interfaces</subject><subject>Mutation</subject><subject>Optimization</subject><subject>Sensitivity</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgCs7pwW8Q8KTQ-SZpmvQ4hv9g4EXPJU3TNaNLtiQV9-2tdmdPz-XH-_A-CN0SWBAo2CNfABQ5yPIMzcgYmeAcztEMgJJMlqK8RFcxbgEIkaycIb3End10WTQu2mS_bDri3h4G22DtnTYuBZWsdxNwGxxTGHQagsG1iqbB3mGF953_9s5qrMMxJtXj2PuEnXK-Nmp3jS5a1Udzc8o5-nx--li9Zuv3l7fVcp1pWtKUtUQULSdCCUpBGQNcNrqpNZNckrxQumaEcK6kIk1O26YVihFRQk6NYEwaNkd309198IfBxFRt_RDcWFnRYny3ECDzUd1PSgcfYzBttQ92p8KxIlD9bljx6rThaB8mG7VNfzv8g38ADRRx-w</recordid><startdate>20220114</startdate><enddate>20220114</enddate><creator>Li, Ke-Yu</creator><creator>Sun, Xiao-Wei</creator><creator>Song, Ting</creator><creator>Wen, Xiao-Dong</creator><creator>Wang, Yi-Wen</creator><creator>Liu, Xi-Xuan</creator><creator>Liu, Zi-Jiang</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4816-4525</orcidid></search><sort><creationdate>20220114</creationdate><title>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam</title><author>Li, Ke-Yu ; Sun, Xiao-Wei ; Song, Ting ; Wen, Xiao-Dong ; Wang, Yi-Wen ; Liu, Xi-Xuan ; Liu, Zi-Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f176f517a7220aee058dcdbc3858146acb31155a8a1d42fdf7a3179042e7338e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acoustic properties</topic><topic>Acoustics</topic><topic>Applied physics</topic><topic>Concentration gradient</topic><topic>Crystal structure</topic><topic>Elastic waves</topic><topic>Electric fields</topic><topic>Energy dissipation</topic><topic>Finite element method</topic><topic>Liquid-solid interfaces</topic><topic>Mutation</topic><topic>Optimization</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ke-Yu</creatorcontrib><creatorcontrib>Sun, Xiao-Wei</creatorcontrib><creatorcontrib>Song, Ting</creatorcontrib><creatorcontrib>Wen, Xiao-Dong</creatorcontrib><creatorcontrib>Wang, Yi-Wen</creatorcontrib><creatorcontrib>Liu, Xi-Xuan</creatorcontrib><creatorcontrib>Liu, Zi-Jiang</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ke-Yu</au><au>Sun, Xiao-Wei</au><au>Song, Ting</au><au>Wen, Xiao-Dong</au><au>Wang, Yi-Wen</au><au>Liu, Xi-Xuan</au><au>Liu, Zi-Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam</atitle><jtitle>Journal of applied physics</jtitle><date>2022-01-14</date><risdate>2022</risdate><volume>131</volume><issue>2</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam with gradient cavities is presented and its sensing properties are investigated using the finite element method. The proposed sensing structure, which can be made from either isotropic or anisotropic materials, can have excellent sensing properties that are designed via geometric optimization. We investigate the influences of various solution concentrations on electromagnetic and elastic wave transmission spectra. The results demonstrate that the introduction of gradient cavities can enable the system to avoid lattice mutation and reduce energy loss, thereby concentrating light and sound energy in the slot and holes, enhancing interactions between the electromagnetic and elastic waves, and improving sensitivity. It is worth noting that the sensing characteristics are related to the electric field distribution in the light sensor. That is, the sensitivity is better when more electric energy is distributed in the liquid-filled slot and holes. The sensitivity can reach 238.1 nm/RIU. The acoustic sensing properties are related to the solid–liquid interaction. This is especially true for the modal sensing characteristics, where the acoustic energy is concentrated on the solid–liquid interface. Therefore, greater interaction strength implies better sensitivity. The acoustic sensitivity can reach 3167 kHz/ms−1. The proposed structure provides acoustic and optical cross-checks for different types of solutions. This helps us to improve sensing accuracy and reduce sensing uncertainty.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0064089</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-4816-4525</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2022-01, Vol.131 (2)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0064089
source American Institute of Physics (AIP) Journals; Alma/SFX Local Collection
subjects Acoustic properties
Acoustics
Applied physics
Concentration gradient
Crystal structure
Elastic waves
Electric fields
Energy dissipation
Finite element method
Liquid-solid interfaces
Mutation
Optimization
Sensitivity
title A high-sensitivity liquid concentration-sensing structure based on a phoxonic crystal slot nanobeam
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T14%3A56%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20high-sensitivity%20liquid%20concentration-sensing%20structure%20based%20on%20a%20phoxonic%20crystal%20slot%20nanobeam&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Li,%20Ke-Yu&rft.date=2022-01-14&rft.volume=131&rft.issue=2&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0064089&rft_dat=%3Cproquest_cross%3E2618367084%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2618367084&rft_id=info:pmid/&rfr_iscdi=true