Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells

For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimeth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-10, Vol.119 (15)
Hauptverfasser: Zou, Yu, Yu, Wenjin, Tang, Zhenyu, Li, Xiangdong, Guo, Haoqing, Liu, Ganghong, Zhang, Qiaohui, Zhang, Yuqing, Zhang, Zehao, Wu, Cuncun, Xiao, Jing, Qu, Bo, Chen, Zhijian, Xiao, Lixin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 15
container_start_page
container_title Applied physics letters
container_volume 119
creator Zou, Yu
Yu, Wenjin
Tang, Zhenyu
Li, Xiangdong
Guo, Haoqing
Liu, Ganghong
Zhang, Qiaohui
Zhang, Yuqing
Zhang, Zehao
Wu, Cuncun
Xiao, Jing
Qu, Bo
Chen, Zhijian
Xiao, Lixin
description For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.
doi_str_mv 10.1063/5.0061869
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0061869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580776937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</originalsourceid><addsrcrecordid>eNqdkF1LwzAUhoMoOKcX_oOAVwqd-WjS9lKGH4OBN3pd0nxsmW1Tk7Qw_PNmbOC9V4fDed4D7wPALUYLjDh9ZAuEOC55dQZmGBVFRjEuz8EMIUQzXjF8Ca5C2KWVEUpn4GfVDd5Ntt9A20ftjZBWtFBuhd9oGL3og9EeNnvYjW20mRl7Ga3rEyOUstFOGhrn4dZuttmQ8s53opcaSuEb12eNCFrBdHBT-LJRw-Ba4aHUbRuuwYURbdA3pzkHny_PH8u3bP3-ulo-rTNJSREzkyuWE54bpYRQjDecEFMpoxkSTYEkb6hmpMJlrirc0DIvZUUUJSlV4IqXdA7ujn9T0-9Rh1jv3OhThVATViZJvKJFou6PlPQuBK9NPXjbCb-vMaoPbmtWn9wm9uHIBmmjOPj4Hzw5_wfWgzL0F0tZihA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580776937</pqid></control><display><type>article</type><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</creator><creatorcontrib>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</creatorcontrib><description>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0061869</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carbon ; Carrier transport ; Charge transfer ; Electron transport ; Energy bands ; Energy levels ; Interfacial energy ; Optimization ; Pastes ; Perovskites ; Photovoltaic cells ; Photovoltaic conversion ; Radiative recombination ; Solar cells ; Tetracyanoquinodimethane</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</citedby><cites>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</cites><orcidid>0000-0002-7376-1420 ; 0000-0002-1190-6962 ; 0000-0002-4413-1139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0061869$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Yu, Wenjin</creatorcontrib><creatorcontrib>Tang, Zhenyu</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Guo, Haoqing</creatorcontrib><creatorcontrib>Liu, Ganghong</creatorcontrib><creatorcontrib>Zhang, Qiaohui</creatorcontrib><creatorcontrib>Zhang, Yuqing</creatorcontrib><creatorcontrib>Zhang, Zehao</creatorcontrib><creatorcontrib>Wu, Cuncun</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Qu, Bo</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Xiao, Lixin</creatorcontrib><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><title>Applied physics letters</title><description>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</description><subject>Applied physics</subject><subject>Carbon</subject><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Electron transport</subject><subject>Energy bands</subject><subject>Energy levels</subject><subject>Interfacial energy</subject><subject>Optimization</subject><subject>Pastes</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>Tetracyanoquinodimethane</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkF1LwzAUhoMoOKcX_oOAVwqd-WjS9lKGH4OBN3pd0nxsmW1Tk7Qw_PNmbOC9V4fDed4D7wPALUYLjDh9ZAuEOC55dQZmGBVFRjEuz8EMIUQzXjF8Ca5C2KWVEUpn4GfVDd5Ntt9A20ftjZBWtFBuhd9oGL3og9EeNnvYjW20mRl7Ga3rEyOUstFOGhrn4dZuttmQ8s53opcaSuEb12eNCFrBdHBT-LJRw-Ba4aHUbRuuwYURbdA3pzkHny_PH8u3bP3-ulo-rTNJSREzkyuWE54bpYRQjDecEFMpoxkSTYEkb6hmpMJlrirc0DIvZUUUJSlV4IqXdA7ujn9T0-9Rh1jv3OhThVATViZJvKJFou6PlPQuBK9NPXjbCb-vMaoPbmtWn9wm9uHIBmmjOPj4Hzw5_wfWgzL0F0tZihA</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Zou, Yu</creator><creator>Yu, Wenjin</creator><creator>Tang, Zhenyu</creator><creator>Li, Xiangdong</creator><creator>Guo, Haoqing</creator><creator>Liu, Ganghong</creator><creator>Zhang, Qiaohui</creator><creator>Zhang, Yuqing</creator><creator>Zhang, Zehao</creator><creator>Wu, Cuncun</creator><creator>Xiao, Jing</creator><creator>Qu, Bo</creator><creator>Chen, Zhijian</creator><creator>Xiao, Lixin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7376-1420</orcidid><orcidid>https://orcid.org/0000-0002-1190-6962</orcidid><orcidid>https://orcid.org/0000-0002-4413-1139</orcidid></search><sort><creationdate>20211011</creationdate><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><author>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Carbon</topic><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Electron transport</topic><topic>Energy bands</topic><topic>Energy levels</topic><topic>Interfacial energy</topic><topic>Optimization</topic><topic>Pastes</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>Tetracyanoquinodimethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Yu, Wenjin</creatorcontrib><creatorcontrib>Tang, Zhenyu</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Guo, Haoqing</creatorcontrib><creatorcontrib>Liu, Ganghong</creatorcontrib><creatorcontrib>Zhang, Qiaohui</creatorcontrib><creatorcontrib>Zhang, Yuqing</creatorcontrib><creatorcontrib>Zhang, Zehao</creatorcontrib><creatorcontrib>Wu, Cuncun</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Qu, Bo</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Xiao, Lixin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yu</au><au>Yu, Wenjin</au><au>Tang, Zhenyu</au><au>Li, Xiangdong</au><au>Guo, Haoqing</au><au>Liu, Ganghong</au><au>Zhang, Qiaohui</au><au>Zhang, Yuqing</au><au>Zhang, Zehao</au><au>Wu, Cuncun</au><au>Xiao, Jing</au><au>Qu, Bo</au><au>Chen, Zhijian</au><au>Xiao, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>119</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061869</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7376-1420</orcidid><orcidid>https://orcid.org/0000-0002-1190-6962</orcidid><orcidid>https://orcid.org/0000-0002-4413-1139</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-10, Vol.119 (15)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0061869
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Carbon
Carrier transport
Charge transfer
Electron transport
Energy bands
Energy levels
Interfacial energy
Optimization
Pastes
Perovskites
Photovoltaic cells
Photovoltaic conversion
Radiative recombination
Solar cells
Tetracyanoquinodimethane
title Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20interfacial%20charge%20transfer%20by%20multi-functional%20additive%20for%20high-performance%20carbon-based%20perovskite%20solar%20cells&rft.jtitle=Applied%20physics%20letters&rft.au=Zou,%20Yu&rft.date=2021-10-11&rft.volume=119&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0061869&rft_dat=%3Cproquest_cross%3E2580776937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580776937&rft_id=info:pmid/&rfr_iscdi=true