Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells
For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimeth...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-10, Vol.119 (15) |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 15 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Zou, Yu Yu, Wenjin Tang, Zhenyu Li, Xiangdong Guo, Haoqing Liu, Ganghong Zhang, Qiaohui Zhang, Yuqing Zhang, Zehao Wu, Cuncun Xiao, Jing Qu, Bo Chen, Zhijian Xiao, Lixin |
description | For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability. |
doi_str_mv | 10.1063/5.0061869 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0061869</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580776937</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</originalsourceid><addsrcrecordid>eNqdkF1LwzAUhoMoOKcX_oOAVwqd-WjS9lKGH4OBN3pd0nxsmW1Tk7Qw_PNmbOC9V4fDed4D7wPALUYLjDh9ZAuEOC55dQZmGBVFRjEuz8EMIUQzXjF8Ca5C2KWVEUpn4GfVDd5Ntt9A20ftjZBWtFBuhd9oGL3og9EeNnvYjW20mRl7Ga3rEyOUstFOGhrn4dZuttmQ8s53opcaSuEb12eNCFrBdHBT-LJRw-Ba4aHUbRuuwYURbdA3pzkHny_PH8u3bP3-ulo-rTNJSREzkyuWE54bpYRQjDecEFMpoxkSTYEkb6hmpMJlrirc0DIvZUUUJSlV4IqXdA7ujn9T0-9Rh1jv3OhThVATViZJvKJFou6PlPQuBK9NPXjbCb-vMaoPbmtWn9wm9uHIBmmjOPj4Hzw5_wfWgzL0F0tZihA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2580776937</pqid></control><display><type>article</type><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</creator><creatorcontrib>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</creatorcontrib><description>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0061869</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Carbon ; Carrier transport ; Charge transfer ; Electron transport ; Energy bands ; Energy levels ; Interfacial energy ; Optimization ; Pastes ; Perovskites ; Photovoltaic cells ; Photovoltaic conversion ; Radiative recombination ; Solar cells ; Tetracyanoquinodimethane</subject><ispartof>Applied physics letters, 2021-10, Vol.119 (15)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</citedby><cites>FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</cites><orcidid>0000-0002-7376-1420 ; 0000-0002-1190-6962 ; 0000-0002-4413-1139</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0061869$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4512,27924,27925,76384</link.rule.ids></links><search><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Yu, Wenjin</creatorcontrib><creatorcontrib>Tang, Zhenyu</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Guo, Haoqing</creatorcontrib><creatorcontrib>Liu, Ganghong</creatorcontrib><creatorcontrib>Zhang, Qiaohui</creatorcontrib><creatorcontrib>Zhang, Yuqing</creatorcontrib><creatorcontrib>Zhang, Zehao</creatorcontrib><creatorcontrib>Wu, Cuncun</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Qu, Bo</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Xiao, Lixin</creatorcontrib><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><title>Applied physics letters</title><description>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</description><subject>Applied physics</subject><subject>Carbon</subject><subject>Carrier transport</subject><subject>Charge transfer</subject><subject>Electron transport</subject><subject>Energy bands</subject><subject>Energy levels</subject><subject>Interfacial energy</subject><subject>Optimization</subject><subject>Pastes</subject><subject>Perovskites</subject><subject>Photovoltaic cells</subject><subject>Photovoltaic conversion</subject><subject>Radiative recombination</subject><subject>Solar cells</subject><subject>Tetracyanoquinodimethane</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkF1LwzAUhoMoOKcX_oOAVwqd-WjS9lKGH4OBN3pd0nxsmW1Tk7Qw_PNmbOC9V4fDed4D7wPALUYLjDh9ZAuEOC55dQZmGBVFRjEuz8EMIUQzXjF8Ca5C2KWVEUpn4GfVDd5Ntt9A20ftjZBWtFBuhd9oGL3og9EeNnvYjW20mRl7Ga3rEyOUstFOGhrn4dZuttmQ8s53opcaSuEb12eNCFrBdHBT-LJRw-Ba4aHUbRuuwYURbdA3pzkHny_PH8u3bP3-ulo-rTNJSREzkyuWE54bpYRQjDecEFMpoxkSTYEkb6hmpMJlrirc0DIvZUUUJSlV4IqXdA7ujn9T0-9Rh1jv3OhThVATViZJvKJFou6PlPQuBK9NPXjbCb-vMaoPbmtWn9wm9uHIBmmjOPj4Hzw5_wfWgzL0F0tZihA</recordid><startdate>20211011</startdate><enddate>20211011</enddate><creator>Zou, Yu</creator><creator>Yu, Wenjin</creator><creator>Tang, Zhenyu</creator><creator>Li, Xiangdong</creator><creator>Guo, Haoqing</creator><creator>Liu, Ganghong</creator><creator>Zhang, Qiaohui</creator><creator>Zhang, Yuqing</creator><creator>Zhang, Zehao</creator><creator>Wu, Cuncun</creator><creator>Xiao, Jing</creator><creator>Qu, Bo</creator><creator>Chen, Zhijian</creator><creator>Xiao, Lixin</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-7376-1420</orcidid><orcidid>https://orcid.org/0000-0002-1190-6962</orcidid><orcidid>https://orcid.org/0000-0002-4413-1139</orcidid></search><sort><creationdate>20211011</creationdate><title>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</title><author>Zou, Yu ; Yu, Wenjin ; Tang, Zhenyu ; Li, Xiangdong ; Guo, Haoqing ; Liu, Ganghong ; Zhang, Qiaohui ; Zhang, Yuqing ; Zhang, Zehao ; Wu, Cuncun ; Xiao, Jing ; Qu, Bo ; Chen, Zhijian ; Xiao, Lixin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-f4d54264fddaad56b622f9dfe50ab70c6b3e529184d91b3848c92d32d54719683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Carbon</topic><topic>Carrier transport</topic><topic>Charge transfer</topic><topic>Electron transport</topic><topic>Energy bands</topic><topic>Energy levels</topic><topic>Interfacial energy</topic><topic>Optimization</topic><topic>Pastes</topic><topic>Perovskites</topic><topic>Photovoltaic cells</topic><topic>Photovoltaic conversion</topic><topic>Radiative recombination</topic><topic>Solar cells</topic><topic>Tetracyanoquinodimethane</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Yu</creatorcontrib><creatorcontrib>Yu, Wenjin</creatorcontrib><creatorcontrib>Tang, Zhenyu</creatorcontrib><creatorcontrib>Li, Xiangdong</creatorcontrib><creatorcontrib>Guo, Haoqing</creatorcontrib><creatorcontrib>Liu, Ganghong</creatorcontrib><creatorcontrib>Zhang, Qiaohui</creatorcontrib><creatorcontrib>Zhang, Yuqing</creatorcontrib><creatorcontrib>Zhang, Zehao</creatorcontrib><creatorcontrib>Wu, Cuncun</creatorcontrib><creatorcontrib>Xiao, Jing</creatorcontrib><creatorcontrib>Qu, Bo</creatorcontrib><creatorcontrib>Chen, Zhijian</creatorcontrib><creatorcontrib>Xiao, Lixin</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Yu</au><au>Yu, Wenjin</au><au>Tang, Zhenyu</au><au>Li, Xiangdong</au><au>Guo, Haoqing</au><au>Liu, Ganghong</au><au>Zhang, Qiaohui</au><au>Zhang, Yuqing</au><au>Zhang, Zehao</au><au>Wu, Cuncun</au><au>Xiao, Jing</au><au>Qu, Bo</au><au>Chen, Zhijian</au><au>Xiao, Lixin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells</atitle><jtitle>Applied physics letters</jtitle><date>2021-10-11</date><risdate>2021</risdate><volume>119</volume><issue>15</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>For perovskite solar cells with carbon electrodes (CPSCs) prepared using undoped hole transport materials and commercial carbon pastes, the poor interfacial carrier transport performance hinders the efficiency improvement. Herein, the use of additive 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) not only plays the role of passivating defects and assisting film formation but also regulates one to obtain more favorable interfacial energy band bending and energy level matching, while forming charge transfer complexes with perovskites due to its strong electron-withdrawing ability. Having all these functions at the same time makes CPSCs with F4TCNQ addition obtain high quality, low defect density films with suppressed non-radiative recombination, along with extremely fast carrier separation and extraction capabilities. Together with the optimization of the electron transport layer, the prepared CPSCs obtained an enhanced photovoltaic conversion efficiency of 15.1% and a VOC of 1.07 V with long stability.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0061869</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-7376-1420</orcidid><orcidid>https://orcid.org/0000-0002-1190-6962</orcidid><orcidid>https://orcid.org/0000-0002-4413-1139</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-10, Vol.119 (15) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0061869 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Carbon Carrier transport Charge transfer Electron transport Energy bands Energy levels Interfacial energy Optimization Pastes Perovskites Photovoltaic cells Photovoltaic conversion Radiative recombination Solar cells Tetracyanoquinodimethane |
title | Improving interfacial charge transfer by multi-functional additive for high-performance carbon-based perovskite solar cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A19%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20interfacial%20charge%20transfer%20by%20multi-functional%20additive%20for%20high-performance%20carbon-based%20perovskite%20solar%20cells&rft.jtitle=Applied%20physics%20letters&rft.au=Zou,%20Yu&rft.date=2021-10-11&rft.volume=119&rft.issue=15&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0061869&rft_dat=%3Cproquest_cross%3E2580776937%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2580776937&rft_id=info:pmid/&rfr_iscdi=true |