High accuracy ab initio potential energy surface for the H2O–H van der Waals dimer
A representation of the three-dimensional potential energy surface (PES) of the H2O–H van der Waals dimer is presented. The H2O molecule is treated as a rigid body held at its experimentally determined equilibrium geometry, with the OH bond length set to 1.809 650 34 a0 and the HOH bond angle set to...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-09, Vol.155 (11), p.114302-114302, Article 114302 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A representation of the three-dimensional potential energy surface (PES) of the H2O–H van der Waals dimer is presented. The H2O molecule is treated as a rigid body held at its experimentally determined equilibrium geometry, with the OH bond length set to 1.809 650 34 a0 and the HOH bond angle set to 1.824 044 93 radians. Ab initio calculations are carried out at the coupled-cluster single, double, and perturbative triple level, with scalar relativistic effects included using the second-order Douglas–Kroll–Hess approximation. The ab initio calculations employ the aug-cc-pVnZ-DK series of basis sets (n = D, T, Q), which are recontracted versions of the aug-cc-pVnZ basis sets that are appropriate for relativistic calculations. The counterpoise method is used to reduce the basis set superposition error; in addition, results obtained using the aug-cc-pVTZ-DK and aug-cc-pVQZ-DK basis sets were extrapolated to the complete basis set (CBS) limit. The PES is based on calculations carried out at 1054 symmetry-unique H2O–H geometries for which the distance R between the H-atom and the H2O center of mass ranges from R = 2.5–9.0 Å. The reproduction of the PES along the orientational degrees of freedom was performed using Lebedev quadrature and an expansion in spherical harmonics. The mean absolute error of the reproduced PES is |
---|---|
ISSN: | 0021-9606 1089-7690 |
DOI: | 10.1063/5.0060822 |