Perspective—On the thermodynamics of perfect unconditional security
A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distributi...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-07, Vol.119 (1) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 119 |
creator | Chamon, Christiana Kish, Laszlo B. |
description | A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium. |
doi_str_mv | 10.1063/5.0057764 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548718304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwNZNsNtmjlPoBhXrQc8jmA1PazZrsFnrzIXxCn8QtLXoQPAzDwI9h5o_QJeAJ4JLesgnGjPOyOEIjwJznFEAcoxHGmOZlxeAUnaW0HEZGKB2h2bONqbW68xv79fG5aLLuze4qroPZNmrtdcqCy1ob3aCyvtGhMb7zoVGrLFndR99tz9GJU6tkLw59jF7vZy_Tx3y-eHia3s1zTQnv8tKBpTUIDEITBTVhFSiHNasFVKRShitjTWWwdqIWBRRE18ppoRUIRktOx-hqv7eN4b23qZPL0MfhkiQJKwQHQXExqOu90jGkFK2TbfRrFbcSsNylJJk8pDTYm71N2ndq99YP3oT4C2Vr3H_47-ZvKdV3Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548718304</pqid></control><display><type>article</type><title>Perspective—On the thermodynamics of perfect unconditional security</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chamon, Christiana ; Kish, Laszlo B.</creator><creatorcontrib>Chamon, Christiana ; Kish, Laszlo B.</creatorcontrib><description>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0057764</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applied physics ; Communication ; Electronic devices ; Energy dissipation ; Energy flow ; Equilibrium ; Line current ; Quantum cryptography ; Security ; Thermal noise</subject><ispartof>Applied physics letters, 2021-07, Vol.119 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</citedby><cites>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</cites><orcidid>0000-0003-3366-8894 ; 0000-0002-8917-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0057764$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Chamon, Christiana</creatorcontrib><creatorcontrib>Kish, Laszlo B.</creatorcontrib><title>Perspective—On the thermodynamics of perfect unconditional security</title><title>Applied physics letters</title><description>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Communication</subject><subject>Electronic devices</subject><subject>Energy dissipation</subject><subject>Energy flow</subject><subject>Equilibrium</subject><subject>Line current</subject><subject>Quantum cryptography</subject><subject>Security</subject><subject>Thermal noise</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwNZNsNtmjlPoBhXrQc8jmA1PazZrsFnrzIXxCn8QtLXoQPAzDwI9h5o_QJeAJ4JLesgnGjPOyOEIjwJznFEAcoxHGmOZlxeAUnaW0HEZGKB2h2bONqbW68xv79fG5aLLuze4qroPZNmrtdcqCy1ob3aCyvtGhMb7zoVGrLFndR99tz9GJU6tkLw59jF7vZy_Tx3y-eHia3s1zTQnv8tKBpTUIDEITBTVhFSiHNasFVKRShitjTWWwdqIWBRRE18ppoRUIRktOx-hqv7eN4b23qZPL0MfhkiQJKwQHQXExqOu90jGkFK2TbfRrFbcSsNylJJk8pDTYm71N2ndq99YP3oT4C2Vr3H_47-ZvKdV3Ow</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Chamon, Christiana</creator><creator>Kish, Laszlo B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3366-8894</orcidid><orcidid>https://orcid.org/0000-0002-8917-954X</orcidid></search><sort><creationdate>20210705</creationdate><title>Perspective—On the thermodynamics of perfect unconditional security</title><author>Chamon, Christiana ; Kish, Laszlo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Communication</topic><topic>Electronic devices</topic><topic>Energy dissipation</topic><topic>Energy flow</topic><topic>Equilibrium</topic><topic>Line current</topic><topic>Quantum cryptography</topic><topic>Security</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamon, Christiana</creatorcontrib><creatorcontrib>Kish, Laszlo B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamon, Christiana</au><au>Kish, Laszlo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective—On the thermodynamics of perfect unconditional security</atitle><jtitle>Applied physics letters</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>119</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057764</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3366-8894</orcidid><orcidid>https://orcid.org/0000-0002-8917-954X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-07, Vol.119 (1) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0057764 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Algorithms Applied physics Communication Electronic devices Energy dissipation Energy flow Equilibrium Line current Quantum cryptography Security Thermal noise |
title | Perspective—On the thermodynamics of perfect unconditional security |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%E2%80%94On%20the%20thermodynamics%20of%20perfect%20unconditional%20security&rft.jtitle=Applied%20physics%20letters&rft.au=Chamon,%20Christiana&rft.date=2021-07-05&rft.volume=119&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0057764&rft_dat=%3Cproquest_cross%3E2548718304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548718304&rft_id=info:pmid/&rfr_iscdi=true |