Perspective—On the thermodynamics of perfect unconditional security

A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-07, Vol.119 (1)
Hauptverfasser: Chamon, Christiana, Kish, Laszlo B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Applied physics letters
container_volume 119
creator Chamon, Christiana
Kish, Laszlo B.
description A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.
doi_str_mv 10.1063/5.0057764
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548718304</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</originalsourceid><addsrcrecordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwNZNsNtmjlPoBhXrQc8jmA1PazZrsFnrzIXxCn8QtLXoQPAzDwI9h5o_QJeAJ4JLesgnGjPOyOEIjwJznFEAcoxHGmOZlxeAUnaW0HEZGKB2h2bONqbW68xv79fG5aLLuze4qroPZNmrtdcqCy1ob3aCyvtGhMb7zoVGrLFndR99tz9GJU6tkLw59jF7vZy_Tx3y-eHia3s1zTQnv8tKBpTUIDEITBTVhFSiHNasFVKRShitjTWWwdqIWBRRE18ppoRUIRktOx-hqv7eN4b23qZPL0MfhkiQJKwQHQXExqOu90jGkFK2TbfRrFbcSsNylJJk8pDTYm71N2ndq99YP3oT4C2Vr3H_47-ZvKdV3Ow</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548718304</pqid></control><display><type>article</type><title>Perspective—On the thermodynamics of perfect unconditional security</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Chamon, Christiana ; Kish, Laszlo B.</creator><creatorcontrib>Chamon, Christiana ; Kish, Laszlo B.</creatorcontrib><description>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0057764</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Applied physics ; Communication ; Electronic devices ; Energy dissipation ; Energy flow ; Equilibrium ; Line current ; Quantum cryptography ; Security ; Thermal noise</subject><ispartof>Applied physics letters, 2021-07, Vol.119 (1)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</citedby><cites>FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</cites><orcidid>0000-0003-3366-8894 ; 0000-0002-8917-954X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0057764$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Chamon, Christiana</creatorcontrib><creatorcontrib>Kish, Laszlo B.</creatorcontrib><title>Perspective—On the thermodynamics of perfect unconditional security</title><title>Applied physics letters</title><description>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</description><subject>Algorithms</subject><subject>Applied physics</subject><subject>Communication</subject><subject>Electronic devices</subject><subject>Energy dissipation</subject><subject>Energy flow</subject><subject>Equilibrium</subject><subject>Line current</subject><subject>Quantum cryptography</subject><subject>Security</subject><subject>Thermal noise</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90M1KAzEQB_AgCtbqwTdY8KSwNZNsNtmjlPoBhXrQc8jmA1PazZrsFnrzIXxCn8QtLXoQPAzDwI9h5o_QJeAJ4JLesgnGjPOyOEIjwJznFEAcoxHGmOZlxeAUnaW0HEZGKB2h2bONqbW68xv79fG5aLLuze4qroPZNmrtdcqCy1ob3aCyvtGhMb7zoVGrLFndR99tz9GJU6tkLw59jF7vZy_Tx3y-eHia3s1zTQnv8tKBpTUIDEITBTVhFSiHNasFVKRShitjTWWwdqIWBRRE18ppoRUIRktOx-hqv7eN4b23qZPL0MfhkiQJKwQHQXExqOu90jGkFK2TbfRrFbcSsNylJJk8pDTYm71N2ndq99YP3oT4C2Vr3H_47-ZvKdV3Ow</recordid><startdate>20210705</startdate><enddate>20210705</enddate><creator>Chamon, Christiana</creator><creator>Kish, Laszlo B.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3366-8894</orcidid><orcidid>https://orcid.org/0000-0002-8917-954X</orcidid></search><sort><creationdate>20210705</creationdate><title>Perspective—On the thermodynamics of perfect unconditional security</title><author>Chamon, Christiana ; Kish, Laszlo B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6f1e3b18018c2a1b2591af0c5b81929ad7aded9d0cf8b84142cbafc8ca1853673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Applied physics</topic><topic>Communication</topic><topic>Electronic devices</topic><topic>Energy dissipation</topic><topic>Energy flow</topic><topic>Equilibrium</topic><topic>Line current</topic><topic>Quantum cryptography</topic><topic>Security</topic><topic>Thermal noise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chamon, Christiana</creatorcontrib><creatorcontrib>Kish, Laszlo B.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chamon, Christiana</au><au>Kish, Laszlo B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective—On the thermodynamics of perfect unconditional security</atitle><jtitle>Applied physics letters</jtitle><date>2021-07-05</date><risdate>2021</risdate><volume>119</volume><issue>1</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>A secure key distribution (exchange) scheme is unconditionally secure if it is unbreakable against arbitrary technological improvements of computing power and/or any development of new algorithms. There are only two families of experimentally realized and tested unconditionally secure key distribution technologies: quantum key distribution (QKD), the base of quantum cryptography, which utilizes quantum physical photonic features, and the Kirchhoff-Law–Johnson-Noise (KLJN) system that is based on classical statistical physics (fluctuation–dissipation theorem). The focus topic of this paper is the thermodynamical situation of the KLJN system. In all the original works, the proposed KLJN schemes required thermal equilibrium between the devices of the communicating parties to achieve perfect security. However, Vadai et al., in (Nature) Sci. Rep. 5, 13653 (2015) show a modified scheme, where there is a non-zero thermal noise energy flow between the parties, yet the system seems to resist all the known attack types. We introduce an attack type against their system. The attack utilizes coincidence events between the line current and voltages. We show that there is a non-zero information leak toward the Eavesdropper, even under idealized conditions. As soon as the thermal equilibrium is restored, the system becomes perfectly secure again. In conclusion, perfect unconditional security requires thermal equilibrium.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057764</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3366-8894</orcidid><orcidid>https://orcid.org/0000-0002-8917-954X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-07, Vol.119 (1)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0057764
source AIP Journals Complete; Alma/SFX Local Collection
subjects Algorithms
Applied physics
Communication
Electronic devices
Energy dissipation
Energy flow
Equilibrium
Line current
Quantum cryptography
Security
Thermal noise
title Perspective—On the thermodynamics of perfect unconditional security
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A37%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%E2%80%94On%20the%20thermodynamics%20of%20perfect%20unconditional%20security&rft.jtitle=Applied%20physics%20letters&rft.au=Chamon,%20Christiana&rft.date=2021-07-05&rft.volume=119&rft.issue=1&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0057764&rft_dat=%3Cproquest_cross%3E2548718304%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548718304&rft_id=info:pmid/&rfr_iscdi=true