Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability

The utilization of an external magnetic field greatly enhances the ion temperature and neutron yield from inertial confinement fusion capsule implosions, and viscosity is important in damping the small-scale mixing. In this paper, we present a linear analysis on Rayleigh–Taylor instability in the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of plasmas 2021-09, Vol.28 (9), Article 092707
Hauptverfasser: Sun, Y. B., Gou, J. N., Wang, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of plasmas
container_volume 28
creator Sun, Y. B.
Gou, J. N.
Wang, C.
description The utilization of an external magnetic field greatly enhances the ion temperature and neutron yield from inertial confinement fusion capsule implosions, and viscosity is important in damping the small-scale mixing. In this paper, we present a linear analysis on Rayleigh–Taylor instability in the presence of viscosity and a vertical magnetic field. Unexpectedly, we find that the combined effects may strongly suppress the instability when the ratio S between the viscosity and the magnetic field strength is equal to 0.1, but enhance the instability for sufficiently large S, particularly for perturbations with high wave numbers. Moreover, the growth rate for S = 10 is broadly the same as when the magnetic field is absent, namely, S = 0. Therefore, the suppression or enhancement of the growth rates is greatly dependent on the ratio S. This phenomenon may play an essential role in the dynamics of intracluster gas in astrophysics and the uniformity of the compression target in magnetic inertial fusion. At last, we confirm that the viscosity instead of the electric resistivity plays a more important role to determine the interface motion in relation to inertial confinement fusion.
doi_str_mv 10.1063/5.0057762
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2574521315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-e087bb7d58e26cebfc608b045645044717f27f5c3c26d4a6f3d349ad7ea6d4e3</originalsourceid><addsrcrecordid>eNqN0MtKxDAUBuAiCo6jC98g4EqlY5rm0llK8QaCILNwIZQ0PdFIJxmTzMjsfAff0CcxUtGV4ip_4Dsn4c-y_QJPCszLEzbBmAnByUY2KnA1zQUXdPMzC5xzTu-2s50QnjDGlLNqlN3Xbt4aCx0CrUHFgJxGKxOUCyaukbQdkmgFPholezSXDxZSRNpA3yFn0a1c92AeHt9f32YpOo-MDVG2pk_ju9mWln2Ava9znM3Oz2b1ZX59c3FVn17nqiQi5oAr0baiYxUQrqDViuOqxZRxyjClohCaCM1UqQjvqOS67Eo6lZ0Ame5QjrODYe3Cu-clhNg8uaW36cWGMEEZKcqCJXU4KOVdCB50s_BmLv26KXDz2V3Dmq_ukq0G-wKt00EZsAq-fSpPEEqo4ClhUpsoo3G2dksb0-jx_0eTPhp0gsOWP3_1K145_wObRafLDyE4n1I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2574521315</pqid></control><display><type>article</type><title>Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability</title><source>AIP Journals Complete</source><source>Web of Science - Science Citation Index Expanded - 2021&lt;img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /&gt;</source><source>Alma/SFX Local Collection</source><creator>Sun, Y. B. ; Gou, J. N. ; Wang, C.</creator><creatorcontrib>Sun, Y. B. ; Gou, J. N. ; Wang, C.</creatorcontrib><description>The utilization of an external magnetic field greatly enhances the ion temperature and neutron yield from inertial confinement fusion capsule implosions, and viscosity is important in damping the small-scale mixing. In this paper, we present a linear analysis on Rayleigh–Taylor instability in the presence of viscosity and a vertical magnetic field. Unexpectedly, we find that the combined effects may strongly suppress the instability when the ratio S between the viscosity and the magnetic field strength is equal to 0.1, but enhance the instability for sufficiently large S, particularly for perturbations with high wave numbers. Moreover, the growth rate for S = 10 is broadly the same as when the magnetic field is absent, namely, S = 0. Therefore, the suppression or enhancement of the growth rates is greatly dependent on the ratio S. This phenomenon may play an essential role in the dynamics of intracluster gas in astrophysics and the uniformity of the compression target in magnetic inertial fusion. At last, we confirm that the viscosity instead of the electric resistivity plays a more important role to determine the interface motion in relation to inertial confinement fusion.</description><identifier>ISSN: 1070-664X</identifier><identifier>EISSN: 1089-7674</identifier><identifier>DOI: 10.1063/5.0057762</identifier><identifier>CODEN: PHPAEN</identifier><language>eng</language><publisher>MELVILLE: AIP Publishing</publisher><subject>Astrophysics ; Damping ; Field strength ; Implosions ; Inertial confinement fusion ; Inertial fusion (reactor) ; Ion temperature ; Linear analysis ; Magnetic fields ; Perturbation ; Physical Sciences ; Physics ; Physics, Fluids &amp; Plasmas ; Plasma physics ; Science &amp; Technology ; Stability analysis ; Taylor instability ; Viscosity</subject><ispartof>Physics of plasmas, 2021-09, Vol.28 (9), Article 092707</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>5</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000724247600002</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c327t-e087bb7d58e26cebfc608b045645044717f27f5c3c26d4a6f3d349ad7ea6d4e3</citedby><cites>FETCH-LOGICAL-c327t-e087bb7d58e26cebfc608b045645044717f27f5c3c26d4a6f3d349ad7ea6d4e3</cites><orcidid>0000-0002-2830-9566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/pop/article-lookup/doi/10.1063/5.0057762$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>315,781,785,795,4513,27929,27930,39263,76389</link.rule.ids></links><search><creatorcontrib>Sun, Y. B.</creatorcontrib><creatorcontrib>Gou, J. N.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><title>Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability</title><title>Physics of plasmas</title><addtitle>PHYS PLASMAS</addtitle><description>The utilization of an external magnetic field greatly enhances the ion temperature and neutron yield from inertial confinement fusion capsule implosions, and viscosity is important in damping the small-scale mixing. In this paper, we present a linear analysis on Rayleigh–Taylor instability in the presence of viscosity and a vertical magnetic field. Unexpectedly, we find that the combined effects may strongly suppress the instability when the ratio S between the viscosity and the magnetic field strength is equal to 0.1, but enhance the instability for sufficiently large S, particularly for perturbations with high wave numbers. Moreover, the growth rate for S = 10 is broadly the same as when the magnetic field is absent, namely, S = 0. Therefore, the suppression or enhancement of the growth rates is greatly dependent on the ratio S. This phenomenon may play an essential role in the dynamics of intracluster gas in astrophysics and the uniformity of the compression target in magnetic inertial fusion. At last, we confirm that the viscosity instead of the electric resistivity plays a more important role to determine the interface motion in relation to inertial confinement fusion.</description><subject>Astrophysics</subject><subject>Damping</subject><subject>Field strength</subject><subject>Implosions</subject><subject>Inertial confinement fusion</subject><subject>Inertial fusion (reactor)</subject><subject>Ion temperature</subject><subject>Linear analysis</subject><subject>Magnetic fields</subject><subject>Perturbation</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Physics, Fluids &amp; Plasmas</subject><subject>Plasma physics</subject><subject>Science &amp; Technology</subject><subject>Stability analysis</subject><subject>Taylor instability</subject><subject>Viscosity</subject><issn>1070-664X</issn><issn>1089-7674</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><recordid>eNqN0MtKxDAUBuAiCo6jC98g4EqlY5rm0llK8QaCILNwIZQ0PdFIJxmTzMjsfAff0CcxUtGV4ip_4Dsn4c-y_QJPCszLEzbBmAnByUY2KnA1zQUXdPMzC5xzTu-2s50QnjDGlLNqlN3Xbt4aCx0CrUHFgJxGKxOUCyaukbQdkmgFPholezSXDxZSRNpA3yFn0a1c92AeHt9f32YpOo-MDVG2pk_ju9mWln2Ava9znM3Oz2b1ZX59c3FVn17nqiQi5oAr0baiYxUQrqDViuOqxZRxyjClohCaCM1UqQjvqOS67Eo6lZ0Ame5QjrODYe3Cu-clhNg8uaW36cWGMEEZKcqCJXU4KOVdCB50s_BmLv26KXDz2V3Dmq_ukq0G-wKt00EZsAq-fSpPEEqo4ClhUpsoo3G2dksb0-jx_0eTPhp0gsOWP3_1K145_wObRafLDyE4n1I</recordid><startdate>202109</startdate><enddate>202109</enddate><creator>Sun, Y. B.</creator><creator>Gou, J. N.</creator><creator>Wang, C.</creator><general>AIP Publishing</general><general>American Institute of Physics</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2830-9566</orcidid></search><sort><creationdate>202109</creationdate><title>Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability</title><author>Sun, Y. B. ; Gou, J. N. ; Wang, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-e087bb7d58e26cebfc608b045645044717f27f5c3c26d4a6f3d349ad7ea6d4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Astrophysics</topic><topic>Damping</topic><topic>Field strength</topic><topic>Implosions</topic><topic>Inertial confinement fusion</topic><topic>Inertial fusion (reactor)</topic><topic>Ion temperature</topic><topic>Linear analysis</topic><topic>Magnetic fields</topic><topic>Perturbation</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Physics, Fluids &amp; Plasmas</topic><topic>Plasma physics</topic><topic>Science &amp; Technology</topic><topic>Stability analysis</topic><topic>Taylor instability</topic><topic>Viscosity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Y. B.</creatorcontrib><creatorcontrib>Gou, J. N.</creatorcontrib><creatorcontrib>Wang, C.</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of plasmas</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Y. B.</au><au>Gou, J. N.</au><au>Wang, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability</atitle><jtitle>Physics of plasmas</jtitle><stitle>PHYS PLASMAS</stitle><date>2021-09</date><risdate>2021</risdate><volume>28</volume><issue>9</issue><artnum>092707</artnum><issn>1070-664X</issn><eissn>1089-7674</eissn><coden>PHPAEN</coden><abstract>The utilization of an external magnetic field greatly enhances the ion temperature and neutron yield from inertial confinement fusion capsule implosions, and viscosity is important in damping the small-scale mixing. In this paper, we present a linear analysis on Rayleigh–Taylor instability in the presence of viscosity and a vertical magnetic field. Unexpectedly, we find that the combined effects may strongly suppress the instability when the ratio S between the viscosity and the magnetic field strength is equal to 0.1, but enhance the instability for sufficiently large S, particularly for perturbations with high wave numbers. Moreover, the growth rate for S = 10 is broadly the same as when the magnetic field is absent, namely, S = 0. Therefore, the suppression or enhancement of the growth rates is greatly dependent on the ratio S. This phenomenon may play an essential role in the dynamics of intracluster gas in astrophysics and the uniformity of the compression target in magnetic inertial fusion. At last, we confirm that the viscosity instead of the electric resistivity plays a more important role to determine the interface motion in relation to inertial confinement fusion.</abstract><cop>MELVILLE</cop><pub>AIP Publishing</pub><doi>10.1063/5.0057762</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-2830-9566</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-664X
ispartof Physics of plasmas, 2021-09, Vol.28 (9), Article 092707
issn 1070-664X
1089-7674
language eng
recordid cdi_crossref_primary_10_1063_5_0057762
source AIP Journals Complete; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" />; Alma/SFX Local Collection
subjects Astrophysics
Damping
Field strength
Implosions
Inertial confinement fusion
Inertial fusion (reactor)
Ion temperature
Linear analysis
Magnetic fields
Perturbation
Physical Sciences
Physics
Physics, Fluids & Plasmas
Plasma physics
Science & Technology
Stability analysis
Taylor instability
Viscosity
title Combined effects of viscosity and a vertical magnetic field on Rayleigh–Taylor instability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-11T23%3A42%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Combined%20effects%20of%20viscosity%20and%20a%20vertical%20magnetic%20field%20on%20Rayleigh%E2%80%93Taylor%20instability&rft.jtitle=Physics%20of%20plasmas&rft.au=Sun,%20Y.%20B.&rft.date=2021-09&rft.volume=28&rft.issue=9&rft.artnum=092707&rft.issn=1070-664X&rft.eissn=1089-7674&rft.coden=PHPAEN&rft_id=info:doi/10.1063/5.0057762&rft_dat=%3Cproquest_cross%3E2574521315%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2574521315&rft_id=info:pmid/&rfr_iscdi=true