Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries

Using micro-particle image velocimetry (μPIV), the convective flow inside a silicone oil droplet was investigated in detail during its formation in coaxial capillaries under co-flow in a water/glycerol mixture continuous phase. The analysis of μPIV measured flow field revealed that two characteristi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-07, Vol.33 (7)
Hauptverfasser: Vagner, S. A., Patlazhan, S. A., Serra, C. A., Funfschilling, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Vagner, S. A.
Patlazhan, S. A.
Serra, C. A.
Funfschilling, D.
description Using micro-particle image velocimetry (μPIV), the convective flow inside a silicone oil droplet was investigated in detail during its formation in coaxial capillaries under co-flow in a water/glycerol mixture continuous phase. The analysis of μPIV measured flow field revealed that two characteristic flow areas exist in the droplet in formation: an inflow zone and a circulation zone. The intensity of vortex flow in these zones was estimated by calculating the average angular velocity of these vortices under the condition of no shear for different dispersed phase and continuous phase flow rates and for different viscosity ratios between the two phases. The evolution of the vortex flow pattern inside the droplet was investigated thoroughly all the way from the step of their formation to the step of the free-moving droplet. The results of this study are important for understanding the mixing processes inside the droplet at different stages of its formation.
doi_str_mv 10.1063/5.0057353
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0057353</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2552170894</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-6a1d68f119ee298a3a9ae96fb094d160ce6d889aacafc09563607b5158d863283</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH32DBk8LWZNNkk2MpaoWCF-s1TLPZmpI2a7Lb1rd315b2IHiaYfjmY-ZH6JbgAcGcPrIBxiynjJ6hHsFCpjnn_Lzrc5xyTskluopxiTGmMuM9NPvwoTa7pHR-m5iNd01t_Tqx6wSSRfBbu14kK6uDL4KvnKmTogndTPv0d6UFtYedBZdoqKxzEKyJ1-iiBBfNzaH20ez56X08SadvL6_j0TTVVPI65UAKLkpCpDGZFEBBgpG8nGM5LAjH2vBCCAmgodRYMk45zueMMFEITjNB--h-7_0Ep6pgVxC-lQerJqOp6maYDjNKCN6Qlr3bs1XwX42JtVr6Jqzb81TGWEbyNq3hydi-HGMw5VFLsOoSVkwdEm7Zhz0bta2hy-0Ib3w4gaoqyv_gv-YfX1uIvQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2552170894</pqid></control><display><type>article</type><title>Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Vagner, S. A. ; Patlazhan, S. A. ; Serra, C. A. ; Funfschilling, D.</creator><creatorcontrib>Vagner, S. A. ; Patlazhan, S. A. ; Serra, C. A. ; Funfschilling, D.</creatorcontrib><description>Using micro-particle image velocimetry (μPIV), the convective flow inside a silicone oil droplet was investigated in detail during its formation in coaxial capillaries under co-flow in a water/glycerol mixture continuous phase. The analysis of μPIV measured flow field revealed that two characteristic flow areas exist in the droplet in formation: an inflow zone and a circulation zone. The intensity of vortex flow in these zones was estimated by calculating the average angular velocity of these vortices under the condition of no shear for different dispersed phase and continuous phase flow rates and for different viscosity ratios between the two phases. The evolution of the vortex flow pattern inside the droplet was investigated thoroughly all the way from the step of their formation to the step of the free-moving droplet. The results of this study are important for understanding the mixing processes inside the droplet at different stages of its formation.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0057353</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Angular velocity ; Capillaries ; Convective flow ; Droplets ; Evolution ; Flow distribution ; Flow velocity ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Glycerol-Water ; Mechanics ; Particle image velocimetry ; Physics ; Viscosity ratio ; Vortices</subject><ispartof>Physics of fluids (1994), 2021-07, Vol.33 (7)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-6a1d68f119ee298a3a9ae96fb094d160ce6d889aacafc09563607b5158d863283</citedby><cites>FETCH-LOGICAL-c396t-6a1d68f119ee298a3a9ae96fb094d160ce6d889aacafc09563607b5158d863283</cites><orcidid>0000-0002-5165-0017 ; 0000-0002-6186-8036 ; 0000-0003-2584-4237 ; 0000-0002-8424-9633</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,790,881,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://hal.science/hal-03423110$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Vagner, S. A.</creatorcontrib><creatorcontrib>Patlazhan, S. A.</creatorcontrib><creatorcontrib>Serra, C. A.</creatorcontrib><creatorcontrib>Funfschilling, D.</creatorcontrib><title>Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries</title><title>Physics of fluids (1994)</title><description>Using micro-particle image velocimetry (μPIV), the convective flow inside a silicone oil droplet was investigated in detail during its formation in coaxial capillaries under co-flow in a water/glycerol mixture continuous phase. The analysis of μPIV measured flow field revealed that two characteristic flow areas exist in the droplet in formation: an inflow zone and a circulation zone. The intensity of vortex flow in these zones was estimated by calculating the average angular velocity of these vortices under the condition of no shear for different dispersed phase and continuous phase flow rates and for different viscosity ratios between the two phases. The evolution of the vortex flow pattern inside the droplet was investigated thoroughly all the way from the step of their formation to the step of the free-moving droplet. The results of this study are important for understanding the mixing processes inside the droplet at different stages of its formation.</description><subject>Angular velocity</subject><subject>Capillaries</subject><subject>Convective flow</subject><subject>Droplets</subject><subject>Evolution</subject><subject>Flow distribution</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Glycerol-Water</subject><subject>Mechanics</subject><subject>Particle image velocimetry</subject><subject>Physics</subject><subject>Viscosity ratio</subject><subject>Vortices</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH32DBk8LWZNNkk2MpaoWCF-s1TLPZmpI2a7Lb1rd315b2IHiaYfjmY-ZH6JbgAcGcPrIBxiynjJ6hHsFCpjnn_Lzrc5xyTskluopxiTGmMuM9NPvwoTa7pHR-m5iNd01t_Tqx6wSSRfBbu14kK6uDL4KvnKmTogndTPv0d6UFtYedBZdoqKxzEKyJ1-iiBBfNzaH20ez56X08SadvL6_j0TTVVPI65UAKLkpCpDGZFEBBgpG8nGM5LAjH2vBCCAmgodRYMk45zueMMFEITjNB--h-7_0Ep6pgVxC-lQerJqOp6maYDjNKCN6Qlr3bs1XwX42JtVr6Jqzb81TGWEbyNq3hydi-HGMw5VFLsOoSVkwdEm7Zhz0bta2hy-0Ib3w4gaoqyv_gv-YfX1uIvQ</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Vagner, S. A.</creator><creator>Patlazhan, S. A.</creator><creator>Serra, C. A.</creator><creator>Funfschilling, D.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0002-5165-0017</orcidid><orcidid>https://orcid.org/0000-0002-6186-8036</orcidid><orcidid>https://orcid.org/0000-0003-2584-4237</orcidid><orcidid>https://orcid.org/0000-0002-8424-9633</orcidid></search><sort><creationdate>20210701</creationdate><title>Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries</title><author>Vagner, S. A. ; Patlazhan, S. A. ; Serra, C. A. ; Funfschilling, D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-6a1d68f119ee298a3a9ae96fb094d160ce6d889aacafc09563607b5158d863283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Angular velocity</topic><topic>Capillaries</topic><topic>Convective flow</topic><topic>Droplets</topic><topic>Evolution</topic><topic>Flow distribution</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Glycerol-Water</topic><topic>Mechanics</topic><topic>Particle image velocimetry</topic><topic>Physics</topic><topic>Viscosity ratio</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vagner, S. A.</creatorcontrib><creatorcontrib>Patlazhan, S. A.</creatorcontrib><creatorcontrib>Serra, C. A.</creatorcontrib><creatorcontrib>Funfschilling, D.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vagner, S. A.</au><au>Patlazhan, S. A.</au><au>Serra, C. A.</au><au>Funfschilling, D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>33</volume><issue>7</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Using micro-particle image velocimetry (μPIV), the convective flow inside a silicone oil droplet was investigated in detail during its formation in coaxial capillaries under co-flow in a water/glycerol mixture continuous phase. The analysis of μPIV measured flow field revealed that two characteristic flow areas exist in the droplet in formation: an inflow zone and a circulation zone. The intensity of vortex flow in these zones was estimated by calculating the average angular velocity of these vortices under the condition of no shear for different dispersed phase and continuous phase flow rates and for different viscosity ratios between the two phases. The evolution of the vortex flow pattern inside the droplet was investigated thoroughly all the way from the step of their formation to the step of the free-moving droplet. The results of this study are important for understanding the mixing processes inside the droplet at different stages of its formation.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0057353</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-5165-0017</orcidid><orcidid>https://orcid.org/0000-0002-6186-8036</orcidid><orcidid>https://orcid.org/0000-0003-2584-4237</orcidid><orcidid>https://orcid.org/0000-0002-8424-9633</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-07, Vol.33 (7)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0057353
source AIP Journals Complete; Alma/SFX Local Collection
subjects Angular velocity
Capillaries
Convective flow
Droplets
Evolution
Flow distribution
Flow velocity
Fluid dynamics
Fluid flow
Fluid mechanics
Glycerol-Water
Mechanics
Particle image velocimetry
Physics
Viscosity ratio
Vortices
title Vortex flow evolution in a growing microdroplet during co-flow in coaxial capillaries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T20%3A44%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Vortex%20flow%20evolution%20in%20a%20growing%20microdroplet%20during%20co-flow%20in%20coaxial%20capillaries&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Vagner,%20S.%20A.&rft.date=2021-07-01&rft.volume=33&rft.issue=7&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0057353&rft_dat=%3Cproquest_cross%3E2552170894%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2552170894&rft_id=info:pmid/&rfr_iscdi=true