Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream

This study reports aerodynamics effects of a fully developed double-shear layer gas flow in the perforation and disintegration of a thin liquid sheet using three-dimensional numerical simulations. A double-shear layer gas flow, where a thin quiescent gas layer is sandwiched between the two fast movi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-06, Vol.33 (6)
1. Verfasser: Agbaglah, G. Gilou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Agbaglah, G. Gilou
description This study reports aerodynamics effects of a fully developed double-shear layer gas flow in the perforation and disintegration of a thin liquid sheet using three-dimensional numerical simulations. A double-shear layer gas flow, where a thin quiescent gas layer is sandwiched between the two fast moving gas layers, is first simulated up to a statistically steady state. The downstream dynamics of the gas shear layers shows vortex shedding and three-dimensional rib-like vortical structures, similar to the wake of a bluff body. This gas flow is then used as the initial condition for a liquid-gas simulation, where the liquid phase is sandwiched by the top and bottom fast gas streams. A thin liquid sheet with a thickness of 25 μm is considered using air/water conditions. The liquid sheet oscillates and small holes, preceded by craters surrounded by ripples, are formed. The thinning of the liquid sheet, spanwise corrugations, and vortex separations within the liquid-gas boundary layer are shown to govern the dynamics of the liquid sheet. A localized pressure jump is also observed inside the liquid sheet and precedes the rupture of the liquid sheet by pushing the liquid away in the span direction. The holes formed subsequently grow in size, collide and merge with each other, and break the liquid sheet into multiple droplets.
doi_str_mv 10.1063/5.0055167
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0055167</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2546332458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-9d38ae0d9c8e3d2006ca803c2611acf8e7ca9c0d23bc61b41ffbf281ca9b16b53</originalsourceid><addsrcrecordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYepJ0MjNLKd6g6Ea3hkwubcpMM00yQt_eqS26ENzkhMPHf-BH6JLAhABnt_kEIM8JL47QiEBZZQXn_Hj3LyDjnJFTdBbjCgBYRfkIfbz0rQlOyQbH1Ost9hYvfWOw9aGVyfk1dmsscVoOwzay69x6gRu36Z3GcWlM2r0yGI3r7eCsjAkvZBzSgpHtOTqxsonm4jDH6P3h_m32lM1fH59nd_NMMVqkrNKslAZ0pUrDNAXgSpbAFOWESGVLUyhZKdCU1YqTekqsrS0tybCtCa9zNkZX-9wu-E1vYhIr34f1cFLQfMoZo9O8HNT1XqngYwzGii64VoatICB29YlcHOob7M3eRuXSdxE_-NOHXyg6bf_Df5O_AIo0fmg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2546332458</pqid></control><display><type>article</type><title>Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Agbaglah, G. Gilou</creator><creatorcontrib>Agbaglah, G. Gilou</creatorcontrib><description>This study reports aerodynamics effects of a fully developed double-shear layer gas flow in the perforation and disintegration of a thin liquid sheet using three-dimensional numerical simulations. A double-shear layer gas flow, where a thin quiescent gas layer is sandwiched between the two fast moving gas layers, is first simulated up to a statistically steady state. The downstream dynamics of the gas shear layers shows vortex shedding and three-dimensional rib-like vortical structures, similar to the wake of a bluff body. This gas flow is then used as the initial condition for a liquid-gas simulation, where the liquid phase is sandwiched by the top and bottom fast gas streams. A thin liquid sheet with a thickness of 25 μm is considered using air/water conditions. The liquid sheet oscillates and small holes, preceded by craters surrounded by ripples, are formed. The thinning of the liquid sheet, spanwise corrugations, and vortex separations within the liquid-gas boundary layer are shown to govern the dynamics of the liquid sheet. A localized pressure jump is also observed inside the liquid sheet and precedes the rupture of the liquid sheet by pushing the liquid away in the span direction. The holes formed subsequently grow in size, collide and merge with each other, and break the liquid sheet into multiple droplets.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0055167</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Boundary layers ; Computational fluid dynamics ; Corrugated sheet ; Disintegration ; Flapping ; Fluid dynamics ; Fluid flow ; Gas flow ; Gas streams ; Liquid phases ; Liquid sheets ; Perforation ; Physics ; Pressure jump ; Shear flow ; Shear layers ; Simulation ; Vortex shedding</subject><ispartof>Physics of fluids (1994), 2021-06, Vol.33 (6)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-9d38ae0d9c8e3d2006ca803c2611acf8e7ca9c0d23bc61b41ffbf281ca9b16b53</citedby><cites>FETCH-LOGICAL-c327t-9d38ae0d9c8e3d2006ca803c2611acf8e7ca9c0d23bc61b41ffbf281ca9b16b53</cites><orcidid>0000-0001-9669-9351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4509,27922,27923</link.rule.ids></links><search><creatorcontrib>Agbaglah, G. Gilou</creatorcontrib><title>Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream</title><title>Physics of fluids (1994)</title><description>This study reports aerodynamics effects of a fully developed double-shear layer gas flow in the perforation and disintegration of a thin liquid sheet using three-dimensional numerical simulations. A double-shear layer gas flow, where a thin quiescent gas layer is sandwiched between the two fast moving gas layers, is first simulated up to a statistically steady state. The downstream dynamics of the gas shear layers shows vortex shedding and three-dimensional rib-like vortical structures, similar to the wake of a bluff body. This gas flow is then used as the initial condition for a liquid-gas simulation, where the liquid phase is sandwiched by the top and bottom fast gas streams. A thin liquid sheet with a thickness of 25 μm is considered using air/water conditions. The liquid sheet oscillates and small holes, preceded by craters surrounded by ripples, are formed. The thinning of the liquid sheet, spanwise corrugations, and vortex separations within the liquid-gas boundary layer are shown to govern the dynamics of the liquid sheet. A localized pressure jump is also observed inside the liquid sheet and precedes the rupture of the liquid sheet by pushing the liquid away in the span direction. The holes formed subsequently grow in size, collide and merge with each other, and break the liquid sheet into multiple droplets.</description><subject>Aerodynamics</subject><subject>Boundary layers</subject><subject>Computational fluid dynamics</subject><subject>Corrugated sheet</subject><subject>Disintegration</subject><subject>Flapping</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Gas flow</subject><subject>Gas streams</subject><subject>Liquid phases</subject><subject>Liquid sheets</subject><subject>Perforation</subject><subject>Physics</subject><subject>Pressure jump</subject><subject>Shear flow</subject><subject>Shear layers</subject><subject>Simulation</subject><subject>Vortex shedding</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90MtKAzEUBuAgCtbqwjcIuFKYepJ0MjNLKd6g6Ea3hkwubcpMM00yQt_eqS26ENzkhMPHf-BH6JLAhABnt_kEIM8JL47QiEBZZQXn_Hj3LyDjnJFTdBbjCgBYRfkIfbz0rQlOyQbH1Ost9hYvfWOw9aGVyfk1dmsscVoOwzay69x6gRu36Z3GcWlM2r0yGI3r7eCsjAkvZBzSgpHtOTqxsonm4jDH6P3h_m32lM1fH59nd_NMMVqkrNKslAZ0pUrDNAXgSpbAFOWESGVLUyhZKdCU1YqTekqsrS0tybCtCa9zNkZX-9wu-E1vYhIr34f1cFLQfMoZo9O8HNT1XqngYwzGii64VoatICB29YlcHOob7M3eRuXSdxE_-NOHXyg6bf_Df5O_AIo0fmg</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Agbaglah, G. Gilou</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9669-9351</orcidid></search><sort><creationdate>202106</creationdate><title>Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream</title><author>Agbaglah, G. Gilou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-9d38ae0d9c8e3d2006ca803c2611acf8e7ca9c0d23bc61b41ffbf281ca9b16b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Boundary layers</topic><topic>Computational fluid dynamics</topic><topic>Corrugated sheet</topic><topic>Disintegration</topic><topic>Flapping</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Gas flow</topic><topic>Gas streams</topic><topic>Liquid phases</topic><topic>Liquid sheets</topic><topic>Perforation</topic><topic>Physics</topic><topic>Pressure jump</topic><topic>Shear flow</topic><topic>Shear layers</topic><topic>Simulation</topic><topic>Vortex shedding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Agbaglah, G. Gilou</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Agbaglah, G. Gilou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-06</date><risdate>2021</risdate><volume>33</volume><issue>6</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>This study reports aerodynamics effects of a fully developed double-shear layer gas flow in the perforation and disintegration of a thin liquid sheet using three-dimensional numerical simulations. A double-shear layer gas flow, where a thin quiescent gas layer is sandwiched between the two fast moving gas layers, is first simulated up to a statistically steady state. The downstream dynamics of the gas shear layers shows vortex shedding and three-dimensional rib-like vortical structures, similar to the wake of a bluff body. This gas flow is then used as the initial condition for a liquid-gas simulation, where the liquid phase is sandwiched by the top and bottom fast gas streams. A thin liquid sheet with a thickness of 25 μm is considered using air/water conditions. The liquid sheet oscillates and small holes, preceded by craters surrounded by ripples, are formed. The thinning of the liquid sheet, spanwise corrugations, and vortex separations within the liquid-gas boundary layer are shown to govern the dynamics of the liquid sheet. A localized pressure jump is also observed inside the liquid sheet and precedes the rupture of the liquid sheet by pushing the liquid away in the span direction. The holes formed subsequently grow in size, collide and merge with each other, and break the liquid sheet into multiple droplets.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0055167</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-9669-9351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-06, Vol.33 (6)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0055167
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aerodynamics
Boundary layers
Computational fluid dynamics
Corrugated sheet
Disintegration
Flapping
Fluid dynamics
Fluid flow
Gas flow
Gas streams
Liquid phases
Liquid sheets
Perforation
Physics
Pressure jump
Shear flow
Shear layers
Simulation
Vortex shedding
title Numerical study of hole formation in a thin flapping liquid sheet sheared by a fast gas stream
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A20%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20study%20of%20hole%20formation%20in%20a%20thin%20flapping%20liquid%20sheet%20sheared%20by%20a%20fast%20gas%20stream&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Agbaglah,%20G.%20Gilou&rft.date=2021-06&rft.volume=33&rft.issue=6&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0055167&rft_dat=%3Cproquest_cross%3E2546332458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2546332458&rft_id=info:pmid/&rfr_iscdi=true