Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix

The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-07, Vol.119 (2)
Hauptverfasser: Thompson, Matthew F., Wu, Xuewang, Huang, Dingbin, Zhang, Yingying, Seaton, Nicholas C. A., Zhang, Chi, Johnson, Matthew T., Podkaminer, Jacob P., Ho, Victor, Wang, Xiaojia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Applied physics letters
container_volume 119
creator Thompson, Matthew F.
Wu, Xuewang
Huang, Dingbin
Zhang, Yingying
Seaton, Nicholas C. A.
Zhang, Chi
Johnson, Matthew T.
Podkaminer, Jacob P.
Ho, Victor
Wang, Xiaojia
description The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a typical composite thermal interface material (TIM) suitable for microelectronics applications. These measurements provide a direct characterization of the thermal properties of filler materials. The measured thermal conductivities of both borosilicate glass and yttria stabilized zirconia microspheres agree well with literature values for bulk materials, whereas the thermal conductivity of the alumina microspheres is nearly 50% lower than that of bulk crystals. The reduction in thermal conductivity of the alumina microspheres highlights how important this level of understanding is for TIM development and is attributed to enhanced phonon scattering due to structural heterogeneity, such as defects induced by phase mixing and microvoids. Combining sample preparation, structural characterization, and direct thermal measurements, our study reveals the structure–thermal property relationship for individual microspheres. The results of this work can facilitate the design and engineering of composite-based thermally conductive materials for thermal management applications.
doi_str_mv 10.1063/5.0055038
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0055038</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2551383978</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-6beded3b4b97582326036296c9cb5781c6f661e5b44f649e99b13d9b9ef0e1f73</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZZDdHqfUDCl70HLLZiW7pbtYklfbfu6UF7x6GYeBhZngJueZsxpmEezFjTAgG1QmZcFaWGXBenZIJYwwyqQQ_JxcxrsZR5AAT4h7bgDbRDk3cBOywT5F6R9MXhs6saQqmj4MPibY9_VybGKnpG2oxmK61dKzg4zBijBS7GpsGmz01PcXBb3e0Mym020ty5sw64tWxT8nH0-J9_pIt355f5w_LzEKep0yOC7CBuqhVKaoccslA5kpaZWtRVtxKJyVHUReFk4VCpWoOjaoVOobclTAlN4e9Q_DfG4xJr_wm9ONJnQvBoQJVVqO6Paj98zGg00NoOxN2mjO9j1ELfYxxtHcHG22bTGp9_z_848Mf1EPj4BdndoFr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551383978</pqid></control><display><type>article</type><title>Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Thompson, Matthew F. ; Wu, Xuewang ; Huang, Dingbin ; Zhang, Yingying ; Seaton, Nicholas C. A. ; Zhang, Chi ; Johnson, Matthew T. ; Podkaminer, Jacob P. ; Ho, Victor ; Wang, Xiaojia</creator><creatorcontrib>Thompson, Matthew F. ; Wu, Xuewang ; Huang, Dingbin ; Zhang, Yingying ; Seaton, Nicholas C. A. ; Zhang, Chi ; Johnson, Matthew T. ; Podkaminer, Jacob P. ; Ho, Victor ; Wang, Xiaojia</creatorcontrib><description>The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a typical composite thermal interface material (TIM) suitable for microelectronics applications. These measurements provide a direct characterization of the thermal properties of filler materials. The measured thermal conductivities of both borosilicate glass and yttria stabilized zirconia microspheres agree well with literature values for bulk materials, whereas the thermal conductivity of the alumina microspheres is nearly 50% lower than that of bulk crystals. The reduction in thermal conductivity of the alumina microspheres highlights how important this level of understanding is for TIM development and is attributed to enhanced phonon scattering due to structural heterogeneity, such as defects induced by phase mixing and microvoids. Combining sample preparation, structural characterization, and direct thermal measurements, our study reveals the structure–thermal property relationship for individual microspheres. The results of this work can facilitate the design and engineering of composite-based thermally conductive materials for thermal management applications.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0055038</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aluminum oxide ; Applied physics ; Borosilicate glass ; Crystal defects ; Diameters ; Fillers ; Heat conductivity ; Heat transfer ; Heterogeneity ; Microspheres ; Particulate composites ; Structural analysis ; Thermal conductivity ; Thermal management ; Thermal measurement ; Thermodynamic properties ; Yttria-stabilized zirconia ; Yttrium oxide ; Zirconium dioxide</subject><ispartof>Applied physics letters, 2021-07, Vol.119 (2)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c322t-6beded3b4b97582326036296c9cb5781c6f661e5b44f649e99b13d9b9ef0e1f73</cites><orcidid>0000-0001-7612-1739 ; 0000-0002-3710-1070 ; 0000-0001-8648-9801</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0055038$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,780,784,794,4510,27923,27924,76155</link.rule.ids></links><search><creatorcontrib>Thompson, Matthew F.</creatorcontrib><creatorcontrib>Wu, Xuewang</creatorcontrib><creatorcontrib>Huang, Dingbin</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Seaton, Nicholas C. A.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Johnson, Matthew T.</creatorcontrib><creatorcontrib>Podkaminer, Jacob P.</creatorcontrib><creatorcontrib>Ho, Victor</creatorcontrib><creatorcontrib>Wang, Xiaojia</creatorcontrib><title>Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix</title><title>Applied physics letters</title><description>The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a typical composite thermal interface material (TIM) suitable for microelectronics applications. These measurements provide a direct characterization of the thermal properties of filler materials. The measured thermal conductivities of both borosilicate glass and yttria stabilized zirconia microspheres agree well with literature values for bulk materials, whereas the thermal conductivity of the alumina microspheres is nearly 50% lower than that of bulk crystals. The reduction in thermal conductivity of the alumina microspheres highlights how important this level of understanding is for TIM development and is attributed to enhanced phonon scattering due to structural heterogeneity, such as defects induced by phase mixing and microvoids. Combining sample preparation, structural characterization, and direct thermal measurements, our study reveals the structure–thermal property relationship for individual microspheres. The results of this work can facilitate the design and engineering of composite-based thermally conductive materials for thermal management applications.</description><subject>Aluminum oxide</subject><subject>Applied physics</subject><subject>Borosilicate glass</subject><subject>Crystal defects</subject><subject>Diameters</subject><subject>Fillers</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Heterogeneity</subject><subject>Microspheres</subject><subject>Particulate composites</subject><subject>Structural analysis</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><subject>Thermal measurement</subject><subject>Thermodynamic properties</subject><subject>Yttria-stabilized zirconia</subject><subject>Yttrium oxide</subject><subject>Zirconium dioxide</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNdnZZDdHqfUDCl70HLLZiW7pbtYklfbfu6UF7x6GYeBhZngJueZsxpmEezFjTAgG1QmZcFaWGXBenZIJYwwyqQQ_JxcxrsZR5AAT4h7bgDbRDk3cBOywT5F6R9MXhs6saQqmj4MPibY9_VybGKnpG2oxmK61dKzg4zBijBS7GpsGmz01PcXBb3e0Mym020ty5sw64tWxT8nH0-J9_pIt355f5w_LzEKep0yOC7CBuqhVKaoccslA5kpaZWtRVtxKJyVHUReFk4VCpWoOjaoVOobclTAlN4e9Q_DfG4xJr_wm9ONJnQvBoQJVVqO6Paj98zGg00NoOxN2mjO9j1ELfYxxtHcHG22bTGp9_z_848Mf1EPj4BdndoFr</recordid><startdate>20210712</startdate><enddate>20210712</enddate><creator>Thompson, Matthew F.</creator><creator>Wu, Xuewang</creator><creator>Huang, Dingbin</creator><creator>Zhang, Yingying</creator><creator>Seaton, Nicholas C. A.</creator><creator>Zhang, Chi</creator><creator>Johnson, Matthew T.</creator><creator>Podkaminer, Jacob P.</creator><creator>Ho, Victor</creator><creator>Wang, Xiaojia</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7612-1739</orcidid><orcidid>https://orcid.org/0000-0002-3710-1070</orcidid><orcidid>https://orcid.org/0000-0001-8648-9801</orcidid></search><sort><creationdate>20210712</creationdate><title>Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix</title><author>Thompson, Matthew F. ; Wu, Xuewang ; Huang, Dingbin ; Zhang, Yingying ; Seaton, Nicholas C. A. ; Zhang, Chi ; Johnson, Matthew T. ; Podkaminer, Jacob P. ; Ho, Victor ; Wang, Xiaojia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-6beded3b4b97582326036296c9cb5781c6f661e5b44f649e99b13d9b9ef0e1f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aluminum oxide</topic><topic>Applied physics</topic><topic>Borosilicate glass</topic><topic>Crystal defects</topic><topic>Diameters</topic><topic>Fillers</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Heterogeneity</topic><topic>Microspheres</topic><topic>Particulate composites</topic><topic>Structural analysis</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><topic>Thermal measurement</topic><topic>Thermodynamic properties</topic><topic>Yttria-stabilized zirconia</topic><topic>Yttrium oxide</topic><topic>Zirconium dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Matthew F.</creatorcontrib><creatorcontrib>Wu, Xuewang</creatorcontrib><creatorcontrib>Huang, Dingbin</creatorcontrib><creatorcontrib>Zhang, Yingying</creatorcontrib><creatorcontrib>Seaton, Nicholas C. A.</creatorcontrib><creatorcontrib>Zhang, Chi</creatorcontrib><creatorcontrib>Johnson, Matthew T.</creatorcontrib><creatorcontrib>Podkaminer, Jacob P.</creatorcontrib><creatorcontrib>Ho, Victor</creatorcontrib><creatorcontrib>Wang, Xiaojia</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Matthew F.</au><au>Wu, Xuewang</au><au>Huang, Dingbin</au><au>Zhang, Yingying</au><au>Seaton, Nicholas C. A.</au><au>Zhang, Chi</au><au>Johnson, Matthew T.</au><au>Podkaminer, Jacob P.</au><au>Ho, Victor</au><au>Wang, Xiaojia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix</atitle><jtitle>Applied physics letters</jtitle><date>2021-07-12</date><risdate>2021</risdate><volume>119</volume><issue>2</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>The time-domain thermoreflectance metrology is applied to evaluate the thermal conductivities of filler particles embedded in a composite matrix. Specifically, a system of glass and ceramic microspheres with a diameter of 100 to 150 μm embedded in an epoxy matrix was used as a representation of a typical composite thermal interface material (TIM) suitable for microelectronics applications. These measurements provide a direct characterization of the thermal properties of filler materials. The measured thermal conductivities of both borosilicate glass and yttria stabilized zirconia microspheres agree well with literature values for bulk materials, whereas the thermal conductivity of the alumina microspheres is nearly 50% lower than that of bulk crystals. The reduction in thermal conductivity of the alumina microspheres highlights how important this level of understanding is for TIM development and is attributed to enhanced phonon scattering due to structural heterogeneity, such as defects induced by phase mixing and microvoids. Combining sample preparation, structural characterization, and direct thermal measurements, our study reveals the structure–thermal property relationship for individual microspheres. The results of this work can facilitate the design and engineering of composite-based thermally conductive materials for thermal management applications.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0055038</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0001-7612-1739</orcidid><orcidid>https://orcid.org/0000-0002-3710-1070</orcidid><orcidid>https://orcid.org/0000-0001-8648-9801</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-07, Vol.119 (2)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0055038
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aluminum oxide
Applied physics
Borosilicate glass
Crystal defects
Diameters
Fillers
Heat conductivity
Heat transfer
Heterogeneity
Microspheres
Particulate composites
Structural analysis
Thermal conductivity
Thermal management
Thermal measurement
Thermodynamic properties
Yttria-stabilized zirconia
Yttrium oxide
Zirconium dioxide
title Direct measurements of thermal transport in glass and ceramic microspheres embedded in an epoxy matrix
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T22%3A23%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Direct%20measurements%20of%20thermal%20transport%20in%20glass%20and%20ceramic%20microspheres%20embedded%20in%20an%20epoxy%20matrix&rft.jtitle=Applied%20physics%20letters&rft.au=Thompson,%20Matthew%20F.&rft.date=2021-07-12&rft.volume=119&rft.issue=2&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0055038&rft_dat=%3Cproquest_cross%3E2551383978%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2551383978&rft_id=info:pmid/&rfr_iscdi=true