Self-assembly of binary solutions to complex structures

Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Usi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2021-07, Vol.155 (1), p.014904-014904
Hauptverfasser: Scacchi, Alberto, Sammalkorpi, Maria, Ala-Nissila, Tapio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 014904
container_issue 1
container_start_page 014904
container_title The Journal of chemical physics
container_volume 155
creator Scacchi, Alberto
Sammalkorpi, Maria
Ala-Nissila, Tapio
description Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.
doi_str_mv 10.1063/5.0053365
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0053365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548718515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</originalsourceid><addsrcrecordid>eNp90EtLw0AUBeBBFKzVhf8g4EaF1DuZV2cpxRcUXKjrYWZ6AylJJs4kYv-9KS0KCq7u5uNw7iHknMKMgmQ3YgYgGJPigEwozHWupIZDMgEoaK4lyGNyktIaAKgq-ISoF6zL3KaEjas3WSgzV7U2brIU6qGvQpuyPmQ-NF2Nn1nq4-D7IWI6JUelrROe7e-UvN3fvS4e8-Xzw9Pidpl7JqHPHXfWMlF4prj0UAACR6GE0NJLdBq1Fcip04DMUodcOi8t4xpXwJV3bEoud7ldDO8Dpt40VfJY17bFMCRTCAGFVKzQI734RddhiO3YblR8ruhcUDGqq53yMaQUsTRdrJrxY0PBbCc0wuwnHO31ziZf9Xa7xjf-CPEHmm5V_of_Jn8BR5h-Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548718515</pqid></control><display><type>article</type><title>Self-assembly of binary solutions to complex structures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</creator><creatorcontrib>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</creatorcontrib><description>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0053365</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aggregates ; Assemblies ; Binary mixtures ; Concentration gradient ; Density functional theory ; Formulations ; Molecular interactions ; Molecular structure ; Nanoparticles ; Self-assembly</subject><ispartof>The Journal of chemical physics, 2021-07, Vol.155 (1), p.014904-014904</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</citedby><cites>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</cites><orcidid>0000-0002-3210-3181 ; 0000-0002-9248-430X ; 0000-0003-4606-5400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0053365$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Scacchi, Alberto</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Ala-Nissila, Tapio</creatorcontrib><title>Self-assembly of binary solutions to complex structures</title><title>The Journal of chemical physics</title><description>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</description><subject>Aggregates</subject><subject>Assemblies</subject><subject>Binary mixtures</subject><subject>Concentration gradient</subject><subject>Density functional theory</subject><subject>Formulations</subject><subject>Molecular interactions</subject><subject>Molecular structure</subject><subject>Nanoparticles</subject><subject>Self-assembly</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AUBeBBFKzVhf8g4EaF1DuZV2cpxRcUXKjrYWZ6AylJJs4kYv-9KS0KCq7u5uNw7iHknMKMgmQ3YgYgGJPigEwozHWupIZDMgEoaK4lyGNyktIaAKgq-ISoF6zL3KaEjas3WSgzV7U2brIU6qGvQpuyPmQ-NF2Nn1nq4-D7IWI6JUelrROe7e-UvN3fvS4e8-Xzw9Pidpl7JqHPHXfWMlF4prj0UAACR6GE0NJLdBq1Fcip04DMUodcOi8t4xpXwJV3bEoud7ldDO8Dpt40VfJY17bFMCRTCAGFVKzQI734RddhiO3YblR8ruhcUDGqq53yMaQUsTRdrJrxY0PBbCc0wuwnHO31ziZf9Xa7xjf-CPEHmm5V_of_Jn8BR5h-Ng</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Scacchi, Alberto</creator><creator>Sammalkorpi, Maria</creator><creator>Ala-Nissila, Tapio</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3210-3181</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid></search><sort><creationdate>20210707</creationdate><title>Self-assembly of binary solutions to complex structures</title><author>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Assemblies</topic><topic>Binary mixtures</topic><topic>Concentration gradient</topic><topic>Density functional theory</topic><topic>Formulations</topic><topic>Molecular interactions</topic><topic>Molecular structure</topic><topic>Nanoparticles</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scacchi, Alberto</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Ala-Nissila, Tapio</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scacchi, Alberto</au><au>Sammalkorpi, Maria</au><au>Ala-Nissila, Tapio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of binary solutions to complex structures</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>155</volume><issue>1</issue><spage>014904</spage><epage>014904</epage><pages>014904-014904</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053365</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3210-3181</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2021-07, Vol.155 (1), p.014904-014904
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0053365
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aggregates
Assemblies
Binary mixtures
Concentration gradient
Density functional theory
Formulations
Molecular interactions
Molecular structure
Nanoparticles
Self-assembly
title Self-assembly of binary solutions to complex structures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20binary%20solutions%20to%20complex%20structures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Scacchi,%20Alberto&rft.date=2021-07-07&rft.volume=155&rft.issue=1&rft.spage=014904&rft.epage=014904&rft.pages=014904-014904&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0053365&rft_dat=%3Cproquest_cross%3E2548718515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548718515&rft_id=info:pmid/&rfr_iscdi=true