Self-assembly of binary solutions to complex structures
Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Usi...
Gespeichert in:
Veröffentlicht in: | The Journal of chemical physics 2021-07, Vol.155 (1), p.014904-014904 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 014904 |
---|---|
container_issue | 1 |
container_start_page | 014904 |
container_title | The Journal of chemical physics |
container_volume | 155 |
creator | Scacchi, Alberto Sammalkorpi, Maria Ala-Nissila, Tapio |
description | Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies. |
doi_str_mv | 10.1063/5.0053365 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0053365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2548718515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</originalsourceid><addsrcrecordid>eNp90EtLw0AUBeBBFKzVhf8g4EaF1DuZV2cpxRcUXKjrYWZ6AylJJs4kYv-9KS0KCq7u5uNw7iHknMKMgmQ3YgYgGJPigEwozHWupIZDMgEoaK4lyGNyktIaAKgq-ISoF6zL3KaEjas3WSgzV7U2brIU6qGvQpuyPmQ-NF2Nn1nq4-D7IWI6JUelrROe7e-UvN3fvS4e8-Xzw9Pidpl7JqHPHXfWMlF4prj0UAACR6GE0NJLdBq1Fcip04DMUodcOi8t4xpXwJV3bEoud7ldDO8Dpt40VfJY17bFMCRTCAGFVKzQI734RddhiO3YblR8ruhcUDGqq53yMaQUsTRdrJrxY0PBbCc0wuwnHO31ziZf9Xa7xjf-CPEHmm5V_of_Jn8BR5h-Ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2548718515</pqid></control><display><type>article</type><title>Self-assembly of binary solutions to complex structures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</creator><creatorcontrib>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</creatorcontrib><description>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0053365</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aggregates ; Assemblies ; Binary mixtures ; Concentration gradient ; Density functional theory ; Formulations ; Molecular interactions ; Molecular structure ; Nanoparticles ; Self-assembly</subject><ispartof>The Journal of chemical physics, 2021-07, Vol.155 (1), p.014904-014904</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</citedby><cites>FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</cites><orcidid>0000-0002-3210-3181 ; 0000-0002-9248-430X ; 0000-0003-4606-5400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0053365$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Scacchi, Alberto</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Ala-Nissila, Tapio</creatorcontrib><title>Self-assembly of binary solutions to complex structures</title><title>The Journal of chemical physics</title><description>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</description><subject>Aggregates</subject><subject>Assemblies</subject><subject>Binary mixtures</subject><subject>Concentration gradient</subject><subject>Density functional theory</subject><subject>Formulations</subject><subject>Molecular interactions</subject><subject>Molecular structure</subject><subject>Nanoparticles</subject><subject>Self-assembly</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp90EtLw0AUBeBBFKzVhf8g4EaF1DuZV2cpxRcUXKjrYWZ6AylJJs4kYv-9KS0KCq7u5uNw7iHknMKMgmQ3YgYgGJPigEwozHWupIZDMgEoaK4lyGNyktIaAKgq-ISoF6zL3KaEjas3WSgzV7U2brIU6qGvQpuyPmQ-NF2Nn1nq4-D7IWI6JUelrROe7e-UvN3fvS4e8-Xzw9Pidpl7JqHPHXfWMlF4prj0UAACR6GE0NJLdBq1Fcip04DMUodcOi8t4xpXwJV3bEoud7ldDO8Dpt40VfJY17bFMCRTCAGFVKzQI734RddhiO3YblR8ruhcUDGqq53yMaQUsTRdrJrxY0PBbCc0wuwnHO31ziZf9Xa7xjf-CPEHmm5V_of_Jn8BR5h-Ng</recordid><startdate>20210707</startdate><enddate>20210707</enddate><creator>Scacchi, Alberto</creator><creator>Sammalkorpi, Maria</creator><creator>Ala-Nissila, Tapio</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3210-3181</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid></search><sort><creationdate>20210707</creationdate><title>Self-assembly of binary solutions to complex structures</title><author>Scacchi, Alberto ; Sammalkorpi, Maria ; Ala-Nissila, Tapio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c360t-b4baa352c3746c020e04e575596c6eb9e9a5e41b90e3a1be46bc6a349ed047cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aggregates</topic><topic>Assemblies</topic><topic>Binary mixtures</topic><topic>Concentration gradient</topic><topic>Density functional theory</topic><topic>Formulations</topic><topic>Molecular interactions</topic><topic>Molecular structure</topic><topic>Nanoparticles</topic><topic>Self-assembly</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scacchi, Alberto</creatorcontrib><creatorcontrib>Sammalkorpi, Maria</creatorcontrib><creatorcontrib>Ala-Nissila, Tapio</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scacchi, Alberto</au><au>Sammalkorpi, Maria</au><au>Ala-Nissila, Tapio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-assembly of binary solutions to complex structures</atitle><jtitle>The Journal of chemical physics</jtitle><date>2021-07-07</date><risdate>2021</risdate><volume>155</volume><issue>1</issue><spage>014904</spage><epage>014904</epage><pages>014904-014904</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>Self-assembly in natural and synthetic molecular systems can create complex aggregates or materials whose properties and functionalities rise from their internal structure and molecular arrangement. The key microscopic features that control such assemblies remain poorly understood, nevertheless. Using classical density functional theory, we demonstrate how the intrinsic length scales and their interplay in terms of interspecies molecular interactions can be used to tune soft matter self-assembly. We apply our strategy to two different soft binary mixtures to create guidelines for tuning intermolecular interactions that lead to transitions from a fully miscible, liquid-like uniform state to formation of simple and core–shell aggregates and mixed aggregate structures. Furthermore, we demonstrate how the interspecies interactions and system composition can be used to control concentration gradients of component species within these assemblies. The insight generated by this work contributes toward understanding and controlling soft multi-component self-assembly systems. Additionally, our results aid in understanding complex biological assemblies and their function and provide tools to engineer molecular interactions in order to control polymeric and protein-based materials, pharmaceutical formulations, and nanoparticle assemblies.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0053365</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-3210-3181</orcidid><orcidid>https://orcid.org/0000-0002-9248-430X</orcidid><orcidid>https://orcid.org/0000-0003-4606-5400</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9606 |
ispartof | The Journal of chemical physics, 2021-07, Vol.155 (1), p.014904-014904 |
issn | 0021-9606 1089-7690 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0053365 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aggregates Assemblies Binary mixtures Concentration gradient Density functional theory Formulations Molecular interactions Molecular structure Nanoparticles Self-assembly |
title | Self-assembly of binary solutions to complex structures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A00%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-assembly%20of%20binary%20solutions%20to%20complex%20structures&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Scacchi,%20Alberto&rft.date=2021-07-07&rft.volume=155&rft.issue=1&rft.spage=014904&rft.epage=014904&rft.pages=014904-014904&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0053365&rft_dat=%3Cproquest_cross%3E2548718515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2548718515&rft_id=info:pmid/&rfr_iscdi=true |