Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2

The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics reviews 2021-12, Vol.8 (4)
Hauptverfasser: Macy, Juan, Ratkovski, Danilo, Balakrishnan, Purnima P., Strungaru, Mara, Chiu, Yu-Che, Flessa Savvidou, Aikaterini, Moon, Alex, Zheng, Wenkai, Weiland, Ashley, McCandless, Gregory T., Chan, Julia Y., Kumar, Govind S., Shatruk, Michael, Grutter, Alexander J., Borchers, Julie A., Ratcliff, William D., Choi, Eun Sang, Santos, Elton J. G., Balicas, Luis
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page
container_title Applied physics reviews
container_volume 8
creator Macy, Juan
Ratkovski, Danilo
Balakrishnan, Purnima P.
Strungaru, Mara
Chiu, Yu-Che
Flessa Savvidou, Aikaterini
Moon, Alex
Zheng, Wenkai
Weiland, Ashley
McCandless, Gregory T.
Chan, Julia Y.
Kumar, Govind S.
Shatruk, Michael
Grutter, Alexander J.
Borchers, Julie A.
Ratcliff, William D.
Choi, Eun Sang
Santos, Elton J. G.
Balicas, Luis
description The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications.
doi_str_mv 10.1063/5.0052952
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0052952</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_5_0052952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c742-f6da0117fe47350a9f3da208801309ddebaf8ad0576100d4c95e79da84b18dca3</originalsourceid><addsrcrecordid>eNpNkLFOwzAURS0EEqUw8AdeGVzei2MnHlFFW6Qilu6Raz9XRsGunIDoHzDziXwJIDownTsc3eEwdo0wQ9DyVs0AVGVUdcImaCQKUwOe_tvn7GIYngE0aI0Ttnq0u0RjdDxE6r2Iyb868jzlJMYS36LtOfXkxpLTjzTmfe7z7sBj4guSXx-f_J0vaUPVJTsLth_o6sgp2yzuN_OVWD8tH-Z3a-GauhJBewuITaC6kQqsCdLbCtoWUILxnrY2tNaDajQC-NoZRY3xtq232Hpn5ZTd_N26koehUOj2Jb7YcugQut8CneqOBeQ3mEZNyg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2</title><source>AIP Journals Complete</source><creator>Macy, Juan ; Ratkovski, Danilo ; Balakrishnan, Purnima P. ; Strungaru, Mara ; Chiu, Yu-Che ; Flessa Savvidou, Aikaterini ; Moon, Alex ; Zheng, Wenkai ; Weiland, Ashley ; McCandless, Gregory T. ; Chan, Julia Y. ; Kumar, Govind S. ; Shatruk, Michael ; Grutter, Alexander J. ; Borchers, Julie A. ; Ratcliff, William D. ; Choi, Eun Sang ; Santos, Elton J. G. ; Balicas, Luis</creator><creatorcontrib>Macy, Juan ; Ratkovski, Danilo ; Balakrishnan, Purnima P. ; Strungaru, Mara ; Chiu, Yu-Che ; Flessa Savvidou, Aikaterini ; Moon, Alex ; Zheng, Wenkai ; Weiland, Ashley ; McCandless, Gregory T. ; Chan, Julia Y. ; Kumar, Govind S. ; Shatruk, Michael ; Grutter, Alexander J. ; Borchers, Julie A. ; Ratcliff, William D. ; Choi, Eun Sang ; Santos, Elton J. G. ; Balicas, Luis</creatorcontrib><description>The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications.</description><identifier>ISSN: 1931-9401</identifier><identifier>EISSN: 1931-9401</identifier><identifier>DOI: 10.1063/5.0052952</identifier><language>eng</language><ispartof>Applied physics reviews, 2021-12, Vol.8 (4)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c742-f6da0117fe47350a9f3da208801309ddebaf8ad0576100d4c95e79da84b18dca3</citedby><cites>FETCH-LOGICAL-c742-f6da0117fe47350a9f3da208801309ddebaf8ad0576100d4c95e79da84b18dca3</cites><orcidid>0000-0001-8956-3851 ; 0000-0001-7624-4843 ; 0000-0002-6876-7625 ; 0000-0003-4434-2160 ; 0000-0001-6065-5787 ; 0000-0002-8218-9382 ; 0000-0001-7198-3559 ; 0000-0002-5209-0293 ; 0000-0002-1426-669X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Macy, Juan</creatorcontrib><creatorcontrib>Ratkovski, Danilo</creatorcontrib><creatorcontrib>Balakrishnan, Purnima P.</creatorcontrib><creatorcontrib>Strungaru, Mara</creatorcontrib><creatorcontrib>Chiu, Yu-Che</creatorcontrib><creatorcontrib>Flessa Savvidou, Aikaterini</creatorcontrib><creatorcontrib>Moon, Alex</creatorcontrib><creatorcontrib>Zheng, Wenkai</creatorcontrib><creatorcontrib>Weiland, Ashley</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Kumar, Govind S.</creatorcontrib><creatorcontrib>Shatruk, Michael</creatorcontrib><creatorcontrib>Grutter, Alexander J.</creatorcontrib><creatorcontrib>Borchers, Julie A.</creatorcontrib><creatorcontrib>Ratcliff, William D.</creatorcontrib><creatorcontrib>Choi, Eun Sang</creatorcontrib><creatorcontrib>Santos, Elton J. G.</creatorcontrib><creatorcontrib>Balicas, Luis</creatorcontrib><title>Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2</title><title>Applied physics reviews</title><description>The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications.</description><issn>1931-9401</issn><issn>1931-9401</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkLFOwzAURS0EEqUw8AdeGVzei2MnHlFFW6Qilu6Raz9XRsGunIDoHzDziXwJIDownTsc3eEwdo0wQ9DyVs0AVGVUdcImaCQKUwOe_tvn7GIYngE0aI0Ttnq0u0RjdDxE6r2Iyb868jzlJMYS36LtOfXkxpLTjzTmfe7z7sBj4guSXx-f_J0vaUPVJTsLth_o6sgp2yzuN_OVWD8tH-Z3a-GauhJBewuITaC6kQqsCdLbCtoWUILxnrY2tNaDajQC-NoZRY3xtq232Hpn5ZTd_N26koehUOj2Jb7YcugQut8CneqOBeQ3mEZNyg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Macy, Juan</creator><creator>Ratkovski, Danilo</creator><creator>Balakrishnan, Purnima P.</creator><creator>Strungaru, Mara</creator><creator>Chiu, Yu-Che</creator><creator>Flessa Savvidou, Aikaterini</creator><creator>Moon, Alex</creator><creator>Zheng, Wenkai</creator><creator>Weiland, Ashley</creator><creator>McCandless, Gregory T.</creator><creator>Chan, Julia Y.</creator><creator>Kumar, Govind S.</creator><creator>Shatruk, Michael</creator><creator>Grutter, Alexander J.</creator><creator>Borchers, Julie A.</creator><creator>Ratcliff, William D.</creator><creator>Choi, Eun Sang</creator><creator>Santos, Elton J. G.</creator><creator>Balicas, Luis</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8956-3851</orcidid><orcidid>https://orcid.org/0000-0001-7624-4843</orcidid><orcidid>https://orcid.org/0000-0002-6876-7625</orcidid><orcidid>https://orcid.org/0000-0003-4434-2160</orcidid><orcidid>https://orcid.org/0000-0001-6065-5787</orcidid><orcidid>https://orcid.org/0000-0002-8218-9382</orcidid><orcidid>https://orcid.org/0000-0001-7198-3559</orcidid><orcidid>https://orcid.org/0000-0002-5209-0293</orcidid><orcidid>https://orcid.org/0000-0002-1426-669X</orcidid></search><sort><creationdate>20211201</creationdate><title>Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2</title><author>Macy, Juan ; Ratkovski, Danilo ; Balakrishnan, Purnima P. ; Strungaru, Mara ; Chiu, Yu-Che ; Flessa Savvidou, Aikaterini ; Moon, Alex ; Zheng, Wenkai ; Weiland, Ashley ; McCandless, Gregory T. ; Chan, Julia Y. ; Kumar, Govind S. ; Shatruk, Michael ; Grutter, Alexander J. ; Borchers, Julie A. ; Ratcliff, William D. ; Choi, Eun Sang ; Santos, Elton J. G. ; Balicas, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c742-f6da0117fe47350a9f3da208801309ddebaf8ad0576100d4c95e79da84b18dca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Macy, Juan</creatorcontrib><creatorcontrib>Ratkovski, Danilo</creatorcontrib><creatorcontrib>Balakrishnan, Purnima P.</creatorcontrib><creatorcontrib>Strungaru, Mara</creatorcontrib><creatorcontrib>Chiu, Yu-Che</creatorcontrib><creatorcontrib>Flessa Savvidou, Aikaterini</creatorcontrib><creatorcontrib>Moon, Alex</creatorcontrib><creatorcontrib>Zheng, Wenkai</creatorcontrib><creatorcontrib>Weiland, Ashley</creatorcontrib><creatorcontrib>McCandless, Gregory T.</creatorcontrib><creatorcontrib>Chan, Julia Y.</creatorcontrib><creatorcontrib>Kumar, Govind S.</creatorcontrib><creatorcontrib>Shatruk, Michael</creatorcontrib><creatorcontrib>Grutter, Alexander J.</creatorcontrib><creatorcontrib>Borchers, Julie A.</creatorcontrib><creatorcontrib>Ratcliff, William D.</creatorcontrib><creatorcontrib>Choi, Eun Sang</creatorcontrib><creatorcontrib>Santos, Elton J. G.</creatorcontrib><creatorcontrib>Balicas, Luis</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Macy, Juan</au><au>Ratkovski, Danilo</au><au>Balakrishnan, Purnima P.</au><au>Strungaru, Mara</au><au>Chiu, Yu-Che</au><au>Flessa Savvidou, Aikaterini</au><au>Moon, Alex</au><au>Zheng, Wenkai</au><au>Weiland, Ashley</au><au>McCandless, Gregory T.</au><au>Chan, Julia Y.</au><au>Kumar, Govind S.</au><au>Shatruk, Michael</au><au>Grutter, Alexander J.</au><au>Borchers, Julie A.</au><au>Ratcliff, William D.</au><au>Choi, Eun Sang</au><au>Santos, Elton J. G.</au><au>Balicas, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2</atitle><jtitle>Applied physics reviews</jtitle><date>2021-12-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><issn>1931-9401</issn><eissn>1931-9401</eissn><abstract>The anomalous Hall, Nernst, and thermal Hall coefficients of the itinerant ferromagnet Fe3−xGeTe2 display anomalies upon cooling that are consistent with a topological transition that could induce deviations with respect to the Wiedemann–Franz (WF) law. This law has not yet been validated for the anomalous transport variables, with recent experimental studies yielding material-dependent results. Nevertheless, the anomalous Hall and thermal Hall coefficients of Fe3−xGeTe2 are found, within our experimental accuracy, to satisfy the WF law for magnetic fields μ0H applied along its c axis. Remarkably, large anomalous transport is also observed for μ0H||a axis with the field aligned along the gradient of the chemical potential generated by thermal gradients or electrical currents, a configuration that should not lead to their observation. These anomalous planar quantities are found to not scale with the component of the planar magnetization (M||), showing instead a sharp decrease beyond μ0H||= 4 T or the field required to align the magnetic moments along μ0H||. We argue that chiral spin structures associated with Bloch domain walls lead to a field-dependent spin chirality that produces a novel type of topological transport in the absence of interaction between the magnetic field and electrical or thermal currents. Locally chiral spin structures are captured by our Monte Carlo simulations incorporating small Dzyaloshinskii–Moriya and biquadratic exchange interactions. These observations reveal not only a new way to detect and expose topological excitations, but also a new configuration for heat conversion that expands the current technological horizon for thermoelectric energy applications.</abstract><doi>10.1063/5.0052952</doi><orcidid>https://orcid.org/0000-0001-8956-3851</orcidid><orcidid>https://orcid.org/0000-0001-7624-4843</orcidid><orcidid>https://orcid.org/0000-0002-6876-7625</orcidid><orcidid>https://orcid.org/0000-0003-4434-2160</orcidid><orcidid>https://orcid.org/0000-0001-6065-5787</orcidid><orcidid>https://orcid.org/0000-0002-8218-9382</orcidid><orcidid>https://orcid.org/0000-0001-7198-3559</orcidid><orcidid>https://orcid.org/0000-0002-5209-0293</orcidid><orcidid>https://orcid.org/0000-0002-1426-669X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1931-9401
ispartof Applied physics reviews, 2021-12, Vol.8 (4)
issn 1931-9401
1931-9401
language eng
recordid cdi_crossref_primary_10_1063_5_0052952
source AIP Journals Complete
title Magnetic field-induced non-trivial electronic topology in Fe3− x GeTe2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A13%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Magnetic%20field-induced%20non-trivial%20electronic%20topology%20in%20Fe3%E2%88%92%20x%20GeTe2&rft.jtitle=Applied%20physics%20reviews&rft.au=Macy,%20Juan&rft.date=2021-12-01&rft.volume=8&rft.issue=4&rft.issn=1931-9401&rft.eissn=1931-9401&rft_id=info:doi/10.1063/5.0052952&rft_dat=%3Ccrossref%3E10_1063_5_0052952%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true