Self-powered proton detectors based on GaN core–shell p–n microwires
Self-powered particle detectors have the potential to offer exceptional flexibility and compactness in applications where size limits and low power consumption are key requisites. Here, we report on the fabrication and characterization of radiation sensors based on GaN core/shell p–n junction microw...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-05, Vol.118 (19) |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 19 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Verheij, D. Peres, M. Cardoso, S. Alves, L. C. Alves, E. Durand, C. Eymery, J. Fernandes, J. Lorenz, K. |
description | Self-powered particle detectors have the potential to offer exceptional flexibility and compactness in applications where size limits and low power consumption are key requisites. Here, we report on the fabrication and characterization of radiation sensors based on GaN core/shell p–n junction microwires working without externally applied bias. With their small size, high resistance to radiation, and high crystalline quality, GaN microwires constitute highly interesting building blocks for radiation-hard devices. Through microfabrication steps, single-wire devices were processed that show a leakage current as low as 1 pA in reverse bias. Irradiation with both UV light and 2 MeV protons results in photo/ionocurrent signals several orders of magnitude above the dark current and response times below 30 ms. The sensor also showed a good resistance to radiation. Although we observed a small increase in the leakage current after a prolonged proton irradiation, the measured transient ionocurrent signal remains stable during irradiation with a total proton fluence of at least
1
×
10
16 protons/cm2. |
doi_str_mv | 10.1063/5.0045050 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0045050</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2525151037</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-d4cc06571545d6e26d74353236276d46a822d18b2c28e3550131bb0ef0df913b3</originalsourceid><addsrcrecordid>eNp9kMFKAzEQhoMoWKsH32DBk8LWSWaT3R5L0VYoelDPIZtk6ZZtsybbijffwTf0SYy0tAfB08z8fPzM_xNySWFAQeAtHwBkHDgckR6FPE-R0uKY9AAAUzHk9JSchbCIJ2eIPTJ9tk2Vtu7demuS1rvOrRJjO6s750NSqhDlKE3UY6Kdt9-fX2FumyZp47ZKlrX27r32NpyTk0o1wV7sZp-83t-9jKfp7GnyMB7NUo1D0aUm0xoEzynPuBGWCZNnyJGhYLkwmVAFY4YWJdOssMg5UKRlCbYCUw0pltgn11vfuWpk6-ul8h_SqVpORzOprZKAjGHG8g2N7NWWjbne1jZ0cuHWfhXfk4wzTjkFzA-OMUoI3lZ7Wwryt1TJ5a7UyN5s2aDrTnW1W-3hjfMHULam-g_-6_wDldaD6A</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2525151037</pqid></control><display><type>article</type><title>Self-powered proton detectors based on GaN core–shell p–n microwires</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Verheij, D. ; Peres, M. ; Cardoso, S. ; Alves, L. C. ; Alves, E. ; Durand, C. ; Eymery, J. ; Fernandes, J. ; Lorenz, K.</creator><creatorcontrib>Verheij, D. ; Peres, M. ; Cardoso, S. ; Alves, L. C. ; Alves, E. ; Durand, C. ; Eymery, J. ; Fernandes, J. ; Lorenz, K.</creatorcontrib><description>Self-powered particle detectors have the potential to offer exceptional flexibility and compactness in applications where size limits and low power consumption are key requisites. Here, we report on the fabrication and characterization of radiation sensors based on GaN core/shell p–n junction microwires working without externally applied bias. With their small size, high resistance to radiation, and high crystalline quality, GaN microwires constitute highly interesting building blocks for radiation-hard devices. Through microfabrication steps, single-wire devices were processed that show a leakage current as low as 1 pA in reverse bias. Irradiation with both UV light and 2 MeV protons results in photo/ionocurrent signals several orders of magnitude above the dark current and response times below 30 ms. The sensor also showed a good resistance to radiation. Although we observed a small increase in the leakage current after a prolonged proton irradiation, the measured transient ionocurrent signal remains stable during irradiation with a total proton fluence of at least
1
×
10
16 protons/cm2.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0045050</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bias ; Condensed Matter ; Dark current ; Engineering Sciences ; Fluence ; GaN ; High resistance ; Leakage current ; Materials ; Materials Science ; Micro and nanotechnologies ; Microelectronics ; Optics ; P-n junctions ; Photonic ; Physics ; Power consumption ; proton detecors ; Proton irradiation ; Radiation ; Radiation counters ; Radiation detectors ; Radiation tolerance ; Single wires ; Ultraviolet radiation ; Wires</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (19)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-d4cc06571545d6e26d74353236276d46a822d18b2c28e3550131bb0ef0df913b3</citedby><cites>FETCH-LOGICAL-c396t-d4cc06571545d6e26d74353236276d46a822d18b2c28e3550131bb0ef0df913b3</cites><orcidid>0000-0003-0633-8937 ; 0000-0001-5546-6922 ; 0000-0001-5369-5019 ; 0000-0002-4916-5637 ; 0000-0002-7693-063X ; 0000-0001-6774-8492 ; 0000-0002-4216-1166 ; 0000-0002-5012-8411 ; 0000-0001-6913-6529 ; 0000-0001-6659-6431 ; 0000-0001-8827-1347</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0045050$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>230,314,777,781,791,882,4498,27905,27906,76133</link.rule.ids><backlink>$$Uhttps://cea.hal.science/cea-03223427$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Verheij, D.</creatorcontrib><creatorcontrib>Peres, M.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Alves, L. C.</creatorcontrib><creatorcontrib>Alves, E.</creatorcontrib><creatorcontrib>Durand, C.</creatorcontrib><creatorcontrib>Eymery, J.</creatorcontrib><creatorcontrib>Fernandes, J.</creatorcontrib><creatorcontrib>Lorenz, K.</creatorcontrib><title>Self-powered proton detectors based on GaN core–shell p–n microwires</title><title>Applied physics letters</title><description>Self-powered particle detectors have the potential to offer exceptional flexibility and compactness in applications where size limits and low power consumption are key requisites. Here, we report on the fabrication and characterization of radiation sensors based on GaN core/shell p–n junction microwires working without externally applied bias. With their small size, high resistance to radiation, and high crystalline quality, GaN microwires constitute highly interesting building blocks for radiation-hard devices. Through microfabrication steps, single-wire devices were processed that show a leakage current as low as 1 pA in reverse bias. Irradiation with both UV light and 2 MeV protons results in photo/ionocurrent signals several orders of magnitude above the dark current and response times below 30 ms. The sensor also showed a good resistance to radiation. Although we observed a small increase in the leakage current after a prolonged proton irradiation, the measured transient ionocurrent signal remains stable during irradiation with a total proton fluence of at least
1
×
10
16 protons/cm2.</description><subject>Applied physics</subject><subject>Bias</subject><subject>Condensed Matter</subject><subject>Dark current</subject><subject>Engineering Sciences</subject><subject>Fluence</subject><subject>GaN</subject><subject>High resistance</subject><subject>Leakage current</subject><subject>Materials</subject><subject>Materials Science</subject><subject>Micro and nanotechnologies</subject><subject>Microelectronics</subject><subject>Optics</subject><subject>P-n junctions</subject><subject>Photonic</subject><subject>Physics</subject><subject>Power consumption</subject><subject>proton detecors</subject><subject>Proton irradiation</subject><subject>Radiation</subject><subject>Radiation counters</subject><subject>Radiation detectors</subject><subject>Radiation tolerance</subject><subject>Single wires</subject><subject>Ultraviolet radiation</subject><subject>Wires</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kMFKAzEQhoMoWKsH32DBk8LWSWaT3R5L0VYoelDPIZtk6ZZtsybbijffwTf0SYy0tAfB08z8fPzM_xNySWFAQeAtHwBkHDgckR6FPE-R0uKY9AAAUzHk9JSchbCIJ2eIPTJ9tk2Vtu7demuS1rvOrRJjO6s750NSqhDlKE3UY6Kdt9-fX2FumyZp47ZKlrX27r32NpyTk0o1wV7sZp-83t-9jKfp7GnyMB7NUo1D0aUm0xoEzynPuBGWCZNnyJGhYLkwmVAFY4YWJdOssMg5UKRlCbYCUw0pltgn11vfuWpk6-ul8h_SqVpORzOprZKAjGHG8g2N7NWWjbne1jZ0cuHWfhXfk4wzTjkFzA-OMUoI3lZ7Wwryt1TJ5a7UyN5s2aDrTnW1W-3hjfMHULam-g_-6_wDldaD6A</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Verheij, D.</creator><creator>Peres, M.</creator><creator>Cardoso, S.</creator><creator>Alves, L. C.</creator><creator>Alves, E.</creator><creator>Durand, C.</creator><creator>Eymery, J.</creator><creator>Fernandes, J.</creator><creator>Lorenz, K.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>1XC</scope><scope>VOOES</scope><orcidid>https://orcid.org/0000-0003-0633-8937</orcidid><orcidid>https://orcid.org/0000-0001-5546-6922</orcidid><orcidid>https://orcid.org/0000-0001-5369-5019</orcidid><orcidid>https://orcid.org/0000-0002-4916-5637</orcidid><orcidid>https://orcid.org/0000-0002-7693-063X</orcidid><orcidid>https://orcid.org/0000-0001-6774-8492</orcidid><orcidid>https://orcid.org/0000-0002-4216-1166</orcidid><orcidid>https://orcid.org/0000-0002-5012-8411</orcidid><orcidid>https://orcid.org/0000-0001-6913-6529</orcidid><orcidid>https://orcid.org/0000-0001-6659-6431</orcidid><orcidid>https://orcid.org/0000-0001-8827-1347</orcidid></search><sort><creationdate>20210510</creationdate><title>Self-powered proton detectors based on GaN core–shell p–n microwires</title><author>Verheij, D. ; Peres, M. ; Cardoso, S. ; Alves, L. C. ; Alves, E. ; Durand, C. ; Eymery, J. ; Fernandes, J. ; Lorenz, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-d4cc06571545d6e26d74353236276d46a822d18b2c28e3550131bb0ef0df913b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bias</topic><topic>Condensed Matter</topic><topic>Dark current</topic><topic>Engineering Sciences</topic><topic>Fluence</topic><topic>GaN</topic><topic>High resistance</topic><topic>Leakage current</topic><topic>Materials</topic><topic>Materials Science</topic><topic>Micro and nanotechnologies</topic><topic>Microelectronics</topic><topic>Optics</topic><topic>P-n junctions</topic><topic>Photonic</topic><topic>Physics</topic><topic>Power consumption</topic><topic>proton detecors</topic><topic>Proton irradiation</topic><topic>Radiation</topic><topic>Radiation counters</topic><topic>Radiation detectors</topic><topic>Radiation tolerance</topic><topic>Single wires</topic><topic>Ultraviolet radiation</topic><topic>Wires</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verheij, D.</creatorcontrib><creatorcontrib>Peres, M.</creatorcontrib><creatorcontrib>Cardoso, S.</creatorcontrib><creatorcontrib>Alves, L. C.</creatorcontrib><creatorcontrib>Alves, E.</creatorcontrib><creatorcontrib>Durand, C.</creatorcontrib><creatorcontrib>Eymery, J.</creatorcontrib><creatorcontrib>Fernandes, J.</creatorcontrib><creatorcontrib>Lorenz, K.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verheij, D.</au><au>Peres, M.</au><au>Cardoso, S.</au><au>Alves, L. C.</au><au>Alves, E.</au><au>Durand, C.</au><au>Eymery, J.</au><au>Fernandes, J.</au><au>Lorenz, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-powered proton detectors based on GaN core–shell p–n microwires</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-10</date><risdate>2021</risdate><volume>118</volume><issue>19</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>Self-powered particle detectors have the potential to offer exceptional flexibility and compactness in applications where size limits and low power consumption are key requisites. Here, we report on the fabrication and characterization of radiation sensors based on GaN core/shell p–n junction microwires working without externally applied bias. With their small size, high resistance to radiation, and high crystalline quality, GaN microwires constitute highly interesting building blocks for radiation-hard devices. Through microfabrication steps, single-wire devices were processed that show a leakage current as low as 1 pA in reverse bias. Irradiation with both UV light and 2 MeV protons results in photo/ionocurrent signals several orders of magnitude above the dark current and response times below 30 ms. The sensor also showed a good resistance to radiation. Although we observed a small increase in the leakage current after a prolonged proton irradiation, the measured transient ionocurrent signal remains stable during irradiation with a total proton fluence of at least
1
×
10
16 protons/cm2.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0045050</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-0633-8937</orcidid><orcidid>https://orcid.org/0000-0001-5546-6922</orcidid><orcidid>https://orcid.org/0000-0001-5369-5019</orcidid><orcidid>https://orcid.org/0000-0002-4916-5637</orcidid><orcidid>https://orcid.org/0000-0002-7693-063X</orcidid><orcidid>https://orcid.org/0000-0001-6774-8492</orcidid><orcidid>https://orcid.org/0000-0002-4216-1166</orcidid><orcidid>https://orcid.org/0000-0002-5012-8411</orcidid><orcidid>https://orcid.org/0000-0001-6913-6529</orcidid><orcidid>https://orcid.org/0000-0001-6659-6431</orcidid><orcidid>https://orcid.org/0000-0001-8827-1347</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-05, Vol.118 (19) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0045050 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Bias Condensed Matter Dark current Engineering Sciences Fluence GaN High resistance Leakage current Materials Materials Science Micro and nanotechnologies Microelectronics Optics P-n junctions Photonic Physics Power consumption proton detecors Proton irradiation Radiation Radiation counters Radiation detectors Radiation tolerance Single wires Ultraviolet radiation Wires |
title | Self-powered proton detectors based on GaN core–shell p–n microwires |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A01%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-powered%20proton%20detectors%20based%20on%20GaN%20core%E2%80%93shell%20p%E2%80%93n%20microwires&rft.jtitle=Applied%20physics%20letters&rft.au=Verheij,%20D.&rft.date=2021-05-10&rft.volume=118&rft.issue=19&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0045050&rft_dat=%3Cproquest_cross%3E2525151037%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2525151037&rft_id=info:pmid/&rfr_iscdi=true |