A convolutional strategy on unstructured mesh for the adjoint vector modeling
In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured c...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-03, Vol.33 (3) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Xu, Mengfei Song, Shufang Sun, Xuxiang Zhang, Weiwei |
description | In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process. |
doi_str_mv | 10.1063/5.0044093 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0044093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504075621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyedujqX4BRUveg7ZbNJu2W5qki3037ulPXuamZeH4eVB6J7AjIBkz2IGwDkodoEmBCpVlFLKy-NeQiElI9foJqUNADBF5QR9zrEN_T50Q25DbzqccjTZrQ449Hjox2uweYiuwVuX1tiHiPPaYdNsQttnvHc2j9E2NK5r-9UtuvKmS-7uPKfo5_Xle_FeLL_ePhbzZWGpornwlDgmeNUwyoxndT32pa6xvFaVckCFs9yWVeO55aICqjxIymoiKuKEqms2RQ-nv7sYfgeXst6EIY71k6YCOJRCUjJSjyfKxpBSdF7vYrs18aAJ6KMtLfTZ1sg-ndhk22yOLv6B_wCHeGlp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504075621</pqid></control><display><type>article</type><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</creator><creatorcontrib>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</creatorcontrib><description>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0044093</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Artificial neural networks ; Computational fluid dynamics ; Finite element method ; Flow mapping ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Graphics processing units ; Machine learning ; Modelling ; Neural networks ; Physics ; Shape optimization ; Unstructured data ; Weighting functions</subject><ispartof>Physics of fluids (1994), 2021-03, Vol.33 (3)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</citedby><cites>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</cites><orcidid>0000-0002-0338-1393 ; 0000-0001-7799-833X ; 0000-0002-5197-4978 ; 0000-0002-0190-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Mengfei</creatorcontrib><creatorcontrib>Song, Shufang</creatorcontrib><creatorcontrib>Sun, Xuxiang</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><title>Physics of fluids (1994)</title><description>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</description><subject>Aerodynamics</subject><subject>Artificial neural networks</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Flow mapping</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Shape optimization</subject><subject>Unstructured data</subject><subject>Weighting functions</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyedujqX4BRUveg7ZbNJu2W5qki3037ulPXuamZeH4eVB6J7AjIBkz2IGwDkodoEmBCpVlFLKy-NeQiElI9foJqUNADBF5QR9zrEN_T50Q25DbzqccjTZrQ449Hjox2uweYiuwVuX1tiHiPPaYdNsQttnvHc2j9E2NK5r-9UtuvKmS-7uPKfo5_Xle_FeLL_ePhbzZWGpornwlDgmeNUwyoxndT32pa6xvFaVckCFs9yWVeO55aICqjxIymoiKuKEqms2RQ-nv7sYfgeXst6EIY71k6YCOJRCUjJSjyfKxpBSdF7vYrs18aAJ6KMtLfTZ1sg-ndhk22yOLv6B_wCHeGlp</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Xu, Mengfei</creator><creator>Song, Shufang</creator><creator>Sun, Xuxiang</creator><creator>Zhang, Weiwei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0338-1393</orcidid><orcidid>https://orcid.org/0000-0001-7799-833X</orcidid><orcidid>https://orcid.org/0000-0002-5197-4978</orcidid><orcidid>https://orcid.org/0000-0002-0190-6774</orcidid></search><sort><creationdate>202103</creationdate><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><author>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Artificial neural networks</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Flow mapping</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Shape optimization</topic><topic>Unstructured data</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mengfei</creatorcontrib><creatorcontrib>Song, Shufang</creatorcontrib><creatorcontrib>Sun, Xuxiang</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mengfei</au><au>Song, Shufang</au><au>Sun, Xuxiang</au><au>Zhang, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convolutional strategy on unstructured mesh for the adjoint vector modeling</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044093</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0338-1393</orcidid><orcidid>https://orcid.org/0000-0001-7799-833X</orcidid><orcidid>https://orcid.org/0000-0002-5197-4978</orcidid><orcidid>https://orcid.org/0000-0002-0190-6774</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-03, Vol.33 (3) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0044093 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Aerodynamics Artificial neural networks Computational fluid dynamics Finite element method Flow mapping Fluid dynamics Fluid flow Fluid mechanics Graphics processing units Machine learning Modelling Neural networks Physics Shape optimization Unstructured data Weighting functions |
title | A convolutional strategy on unstructured mesh for the adjoint vector modeling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convolutional%20strategy%20on%20unstructured%20mesh%20for%20the%20adjoint%20vector%20modeling&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Xu,%20Mengfei&rft.date=2021-03&rft.volume=33&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0044093&rft_dat=%3Cproquest_cross%3E2504075621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504075621&rft_id=info:pmid/&rfr_iscdi=true |