A convolutional strategy on unstructured mesh for the adjoint vector modeling

In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-03, Vol.33 (3)
Hauptverfasser: Xu, Mengfei, Song, Shufang, Sun, Xuxiang, Zhang, Weiwei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Xu, Mengfei
Song, Shufang
Sun, Xuxiang
Zhang, Weiwei
description In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.
doi_str_mv 10.1063/5.0044093
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0044093</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2504075621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyedujqX4BRUveg7ZbNJu2W5qki3037ulPXuamZeH4eVB6J7AjIBkz2IGwDkodoEmBCpVlFLKy-NeQiElI9foJqUNADBF5QR9zrEN_T50Q25DbzqccjTZrQ449Hjox2uweYiuwVuX1tiHiPPaYdNsQttnvHc2j9E2NK5r-9UtuvKmS-7uPKfo5_Xle_FeLL_ePhbzZWGpornwlDgmeNUwyoxndT32pa6xvFaVckCFs9yWVeO55aICqjxIymoiKuKEqms2RQ-nv7sYfgeXst6EIY71k6YCOJRCUjJSjyfKxpBSdF7vYrs18aAJ6KMtLfTZ1sg-ndhk22yOLv6B_wCHeGlp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2504075621</pqid></control><display><type>article</type><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</creator><creatorcontrib>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</creatorcontrib><description>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0044093</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Artificial neural networks ; Computational fluid dynamics ; Finite element method ; Flow mapping ; Fluid dynamics ; Fluid flow ; Fluid mechanics ; Graphics processing units ; Machine learning ; Modelling ; Neural networks ; Physics ; Shape optimization ; Unstructured data ; Weighting functions</subject><ispartof>Physics of fluids (1994), 2021-03, Vol.33 (3)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</citedby><cites>FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</cites><orcidid>0000-0002-0338-1393 ; 0000-0001-7799-833X ; 0000-0002-5197-4978 ; 0000-0002-0190-6774</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,794,4512,27924,27925</link.rule.ids></links><search><creatorcontrib>Xu, Mengfei</creatorcontrib><creatorcontrib>Song, Shufang</creatorcontrib><creatorcontrib>Sun, Xuxiang</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><title>Physics of fluids (1994)</title><description>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</description><subject>Aerodynamics</subject><subject>Artificial neural networks</subject><subject>Computational fluid dynamics</subject><subject>Finite element method</subject><subject>Flow mapping</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Graphics processing units</subject><subject>Machine learning</subject><subject>Modelling</subject><subject>Neural networks</subject><subject>Physics</subject><subject>Shape optimization</subject><subject>Unstructured data</subject><subject>Weighting functions</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyedujqX4BRUveg7ZbNJu2W5qki3037ulPXuamZeH4eVB6J7AjIBkz2IGwDkodoEmBCpVlFLKy-NeQiElI9foJqUNADBF5QR9zrEN_T50Q25DbzqccjTZrQ449Hjox2uweYiuwVuX1tiHiPPaYdNsQttnvHc2j9E2NK5r-9UtuvKmS-7uPKfo5_Xle_FeLL_ePhbzZWGpornwlDgmeNUwyoxndT32pa6xvFaVckCFs9yWVeO55aICqjxIymoiKuKEqms2RQ-nv7sYfgeXst6EIY71k6YCOJRCUjJSjyfKxpBSdF7vYrs18aAJ6KMtLfTZ1sg-ndhk22yOLv6B_wCHeGlp</recordid><startdate>202103</startdate><enddate>202103</enddate><creator>Xu, Mengfei</creator><creator>Song, Shufang</creator><creator>Sun, Xuxiang</creator><creator>Zhang, Weiwei</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0338-1393</orcidid><orcidid>https://orcid.org/0000-0001-7799-833X</orcidid><orcidid>https://orcid.org/0000-0002-5197-4978</orcidid><orcidid>https://orcid.org/0000-0002-0190-6774</orcidid></search><sort><creationdate>202103</creationdate><title>A convolutional strategy on unstructured mesh for the adjoint vector modeling</title><author>Xu, Mengfei ; Song, Shufang ; Sun, Xuxiang ; Zhang, Weiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f21e3548d323af3bb0932edc4b989e025ec4c78df4c458029f0623b1581e59bb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Aerodynamics</topic><topic>Artificial neural networks</topic><topic>Computational fluid dynamics</topic><topic>Finite element method</topic><topic>Flow mapping</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Graphics processing units</topic><topic>Machine learning</topic><topic>Modelling</topic><topic>Neural networks</topic><topic>Physics</topic><topic>Shape optimization</topic><topic>Unstructured data</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Mengfei</creatorcontrib><creatorcontrib>Song, Shufang</creatorcontrib><creatorcontrib>Sun, Xuxiang</creatorcontrib><creatorcontrib>Zhang, Weiwei</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Mengfei</au><au>Song, Shufang</au><au>Sun, Xuxiang</au><au>Zhang, Weiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A convolutional strategy on unstructured mesh for the adjoint vector modeling</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-03</date><risdate>2021</risdate><volume>33</volume><issue>3</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>In machine learning for fluid mechanics, the fully connected neural network (FNN) only uses local features for modeling, while the convolutional neural network (CNN) cannot be applied to data on structured/unstructured mesh. In order to overcome the limitations of the FNN and CNN, the unstructured convolutional neural network (UCNN) is proposed, which aggregates and effectively exploits the features of neighbor nodes through the weight function. Adjoint vector modeling is taken as the task to study the performance of the UCNN. The mapping function from flow-field features to the adjoint vector is constructed through efficient parallel implementation on graphics processing unit (GPU). The modeling capability of the UCNN is compared with that of the FNN on the validation set and in aerodynamic shape optimization in the test case. The influence of mesh changing on the modeling capability of the UCNN is further studied. The results indicate that the UCNN is more accurate in the modeling process.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0044093</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-0338-1393</orcidid><orcidid>https://orcid.org/0000-0001-7799-833X</orcidid><orcidid>https://orcid.org/0000-0002-5197-4978</orcidid><orcidid>https://orcid.org/0000-0002-0190-6774</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-03, Vol.33 (3)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0044093
source AIP Journals Complete; Alma/SFX Local Collection
subjects Aerodynamics
Artificial neural networks
Computational fluid dynamics
Finite element method
Flow mapping
Fluid dynamics
Fluid flow
Fluid mechanics
Graphics processing units
Machine learning
Modelling
Neural networks
Physics
Shape optimization
Unstructured data
Weighting functions
title A convolutional strategy on unstructured mesh for the adjoint vector modeling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T11%3A15%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20convolutional%20strategy%20on%20unstructured%20mesh%20for%20the%20adjoint%20vector%20modeling&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Xu,%20Mengfei&rft.date=2021-03&rft.volume=33&rft.issue=3&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0044093&rft_dat=%3Cproquest_cross%3E2504075621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2504075621&rft_id=info:pmid/&rfr_iscdi=true