Internal magnetic measurement in collisional-merging process of a field-reversed configuration

An internal magnetic probe array has been developed to observe the three components of the magnetic field simultaneously in the vicinity of the collision surface of two colliding plasmoids at supersonic/Alfvénic velocity. Collisional-merging formation of a field-reversed configuration (FRC) has been...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-05, Vol.92 (5), p.053541-053541
Hauptverfasser: Watanabe, T., Asai, T., Takahashi, Ts, Kobayashi, D., Harashima, D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An internal magnetic probe array has been developed to observe the three components of the magnetic field simultaneously in the vicinity of the collision surface of two colliding plasmoids at supersonic/Alfvénic velocity. Collisional-merging formation of a field-reversed configuration (FRC) has been conducted in the (FRC Amplification via Translation-Collisional Merging) device at Nihon University. Significant plasma heating and an increase in trapped poloidal magnetic flux have been observed during/after the collisional-merging process in the FAT-CM device. In this dynamic formation process, two FRC-like plasmoids formed by a field-reversed theta-pinch method collide in the middle of the confinement chamber at a relative speed of 200–400 km/s. Therefore, the excited shockwave is considered as one of the heating mechanisms. The developed probe array installed in the middle of the confinement chamber observes the internal structure of the magnetic field. The probe consists of 12 sets of three-axis chip inductors arranged at intervals of 40 mm. The measurement position can be varied in the radial direction. In the single translation and collisional-merging experiment, the internal magnetic probe measures the magnetic field’s radial distribution with a high time resolution under noise.
ISSN:0034-6748
1089-7623
DOI:10.1063/5.0043785