An adaptive binary friction model for multicomponent gas transport in tight porous media

A new multicomponent gas transport model called the adaptive binary friction model (ABFM) was developed. The merit of the ABFM lies in the rigorous treatment of viscous slip and diffusion slip. The ABFM uses the general slip boundary condition to characterize viscous slip and thus is applicable in m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied physics 2021-03, Vol.129 (9)
Hauptverfasser: Ren, Wenxi, Duan, Youjing, Guo, Jianchun, Wang, Tianyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Journal of applied physics
container_volume 129
creator Ren, Wenxi
Duan, Youjing
Guo, Jianchun
Wang, Tianyu
description A new multicomponent gas transport model called the adaptive binary friction model (ABFM) was developed. The merit of the ABFM lies in the rigorous treatment of viscous slip and diffusion slip. The ABFM uses the general slip boundary condition to characterize viscous slip and thus is applicable in multiple flow regimes. The ABFM uses the Kramers and Kistemaker model to describe diffusion slip and thus satisfies Graham's law in a natural way. The ABFM also eliminates the restrictive assumptions made in previous models, such as uniform flow. Published experimental data on multicomponent gas transport were used to test the ABFM. The agreement of the ABFM results with the experimental data is good. Moreover, the ABFM can predict the transport of different gas mixtures under various conditions based on the determined pore structure parameters. Considering its versatility, the ABFM is anticipated to be useful in heterogeneous catalysis, membrane transport, etc.
doi_str_mv 10.1063/5.0042709
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0042709</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2495608685</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-a7d680bf2f0001e13ac70bf082e1cf36d7ed7083f079b1e221136b5ff9dcdf913</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyabZJMdS_IKCFwVvSzYfNaWbrElW8N-7pZ49DS88vDPzIHRNYEGgofdsAbCsOcgTNCMgZMUZg1M0A6hJJSSX5-gi5x0AIYLKGfpYBayMGor_trjzQaUf7JLXxceA-2jsHruYcD_ui9exH2KwoeCtyrgkFfIQU8E-4OK3nwVPKY4Z99Z4dYnOnNpne_U35-j98eFt_VxtXp9e1qtNpSkTpVLcNAI6VzuYbrKEKs2nCKK2RDvaGG4NB0EdcNkRW9eE0KZjzkmjjZOEztHNsXdI8Wu0ubS7OKYwrWzrpWQNiEawibo9UjrFnJN17ZB8Pz3bEmgP4lrW_omb2Lsjm7Uv6iDiH_gXKHVt_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2495608685</pqid></control><display><type>article</type><title>An adaptive binary friction model for multicomponent gas transport in tight porous media</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Ren, Wenxi ; Duan, Youjing ; Guo, Jianchun ; Wang, Tianyu</creator><creatorcontrib>Ren, Wenxi ; Duan, Youjing ; Guo, Jianchun ; Wang, Tianyu</creatorcontrib><description>A new multicomponent gas transport model called the adaptive binary friction model (ABFM) was developed. The merit of the ABFM lies in the rigorous treatment of viscous slip and diffusion slip. The ABFM uses the general slip boundary condition to characterize viscous slip and thus is applicable in multiple flow regimes. The ABFM uses the Kramers and Kistemaker model to describe diffusion slip and thus satisfies Graham's law in a natural way. The ABFM also eliminates the restrictive assumptions made in previous models, such as uniform flow. Published experimental data on multicomponent gas transport were used to test the ABFM. The agreement of the ABFM results with the experimental data is good. Moreover, the ABFM can predict the transport of different gas mixtures under various conditions based on the determined pore structure parameters. Considering its versatility, the ABFM is anticipated to be useful in heterogeneous catalysis, membrane transport, etc.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0042709</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Boundary conditions ; Gas mixtures ; Gas transport ; Porosity ; Porous media ; Slip ; Uniform flow</subject><ispartof>Journal of applied physics, 2021-03, Vol.129 (9)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-a7d680bf2f0001e13ac70bf082e1cf36d7ed7083f079b1e221136b5ff9dcdf913</citedby><cites>FETCH-LOGICAL-c358t-a7d680bf2f0001e13ac70bf082e1cf36d7ed7083f079b1e221136b5ff9dcdf913</cites><orcidid>0000-0001-9601-1203 ; 0000-0002-8904-5744</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0042709$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Ren, Wenxi</creatorcontrib><creatorcontrib>Duan, Youjing</creatorcontrib><creatorcontrib>Guo, Jianchun</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><title>An adaptive binary friction model for multicomponent gas transport in tight porous media</title><title>Journal of applied physics</title><description>A new multicomponent gas transport model called the adaptive binary friction model (ABFM) was developed. The merit of the ABFM lies in the rigorous treatment of viscous slip and diffusion slip. The ABFM uses the general slip boundary condition to characterize viscous slip and thus is applicable in multiple flow regimes. The ABFM uses the Kramers and Kistemaker model to describe diffusion slip and thus satisfies Graham's law in a natural way. The ABFM also eliminates the restrictive assumptions made in previous models, such as uniform flow. Published experimental data on multicomponent gas transport were used to test the ABFM. The agreement of the ABFM results with the experimental data is good. Moreover, the ABFM can predict the transport of different gas mixtures under various conditions based on the determined pore structure parameters. Considering its versatility, the ABFM is anticipated to be useful in heterogeneous catalysis, membrane transport, etc.</description><subject>Applied physics</subject><subject>Boundary conditions</subject><subject>Gas mixtures</subject><subject>Gas transport</subject><subject>Porosity</subject><subject>Porous media</subject><subject>Slip</subject><subject>Uniform flow</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWKsH_0HAk8LWyabZJMdS_IKCFwVvSzYfNaWbrElW8N-7pZ49DS88vDPzIHRNYEGgofdsAbCsOcgTNCMgZMUZg1M0A6hJJSSX5-gi5x0AIYLKGfpYBayMGor_trjzQaUf7JLXxceA-2jsHruYcD_ui9exH2KwoeCtyrgkFfIQU8E-4OK3nwVPKY4Z99Z4dYnOnNpne_U35-j98eFt_VxtXp9e1qtNpSkTpVLcNAI6VzuYbrKEKs2nCKK2RDvaGG4NB0EdcNkRW9eE0KZjzkmjjZOEztHNsXdI8Wu0ubS7OKYwrWzrpWQNiEawibo9UjrFnJN17ZB8Pz3bEmgP4lrW_omb2Lsjm7Uv6iDiH_gXKHVt_A</recordid><startdate>20210307</startdate><enddate>20210307</enddate><creator>Ren, Wenxi</creator><creator>Duan, Youjing</creator><creator>Guo, Jianchun</creator><creator>Wang, Tianyu</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9601-1203</orcidid><orcidid>https://orcid.org/0000-0002-8904-5744</orcidid></search><sort><creationdate>20210307</creationdate><title>An adaptive binary friction model for multicomponent gas transport in tight porous media</title><author>Ren, Wenxi ; Duan, Youjing ; Guo, Jianchun ; Wang, Tianyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-a7d680bf2f0001e13ac70bf082e1cf36d7ed7083f079b1e221136b5ff9dcdf913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Boundary conditions</topic><topic>Gas mixtures</topic><topic>Gas transport</topic><topic>Porosity</topic><topic>Porous media</topic><topic>Slip</topic><topic>Uniform flow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ren, Wenxi</creatorcontrib><creatorcontrib>Duan, Youjing</creatorcontrib><creatorcontrib>Guo, Jianchun</creatorcontrib><creatorcontrib>Wang, Tianyu</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ren, Wenxi</au><au>Duan, Youjing</au><au>Guo, Jianchun</au><au>Wang, Tianyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An adaptive binary friction model for multicomponent gas transport in tight porous media</atitle><jtitle>Journal of applied physics</jtitle><date>2021-03-07</date><risdate>2021</risdate><volume>129</volume><issue>9</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>A new multicomponent gas transport model called the adaptive binary friction model (ABFM) was developed. The merit of the ABFM lies in the rigorous treatment of viscous slip and diffusion slip. The ABFM uses the general slip boundary condition to characterize viscous slip and thus is applicable in multiple flow regimes. The ABFM uses the Kramers and Kistemaker model to describe diffusion slip and thus satisfies Graham's law in a natural way. The ABFM also eliminates the restrictive assumptions made in previous models, such as uniform flow. Published experimental data on multicomponent gas transport were used to test the ABFM. The agreement of the ABFM results with the experimental data is good. Moreover, the ABFM can predict the transport of different gas mixtures under various conditions based on the determined pore structure parameters. Considering its versatility, the ABFM is anticipated to be useful in heterogeneous catalysis, membrane transport, etc.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0042709</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9601-1203</orcidid><orcidid>https://orcid.org/0000-0002-8904-5744</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8979
ispartof Journal of applied physics, 2021-03, Vol.129 (9)
issn 0021-8979
1089-7550
language eng
recordid cdi_crossref_primary_10_1063_5_0042709
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Boundary conditions
Gas mixtures
Gas transport
Porosity
Porous media
Slip
Uniform flow
title An adaptive binary friction model for multicomponent gas transport in tight porous media
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20adaptive%20binary%20friction%20model%20for%20multicomponent%20gas%20transport%20in%20tight%20porous%20media&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Ren,%20Wenxi&rft.date=2021-03-07&rft.volume=129&rft.issue=9&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0042709&rft_dat=%3Cproquest_cross%3E2495608685%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2495608685&rft_id=info:pmid/&rfr_iscdi=true