Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario

Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-02, Vol.118 (7)
Hauptverfasser: Huang, Muzhang, Liu, Xiangyang, Zhang, Peng, Qian, Xin, Feng, Yingjie, Li, Zheng, Pan, Wei, Wan, Chunlei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page
container_title Applied physics letters
container_volume 118
creator Huang, Muzhang
Liu, Xiangyang
Zhang, Peng
Qian, Xin
Feng, Yingjie
Li, Zheng
Pan, Wei
Wan, Chunlei
description Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.
doi_str_mv 10.1063/5.0040546
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0040546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_5_0040546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</originalsourceid><addsrcrecordid>eNotkL9OwzAYxC0EEqUw8AZeEUrwZ8dxwwYV_6SKDnRhilz7S2OUxpUdEHkDZh6RJ8GILne60-k3HCHnwHJgpbiSOWMFk0V5QCbAlMoEwOyQTBhjIisrCcfkJMa3FCUXYkJ2qxbDVnfU-N6-m8F9uGGkW2-xc_2G-p62btN2I7Uu-mAxoKUmjHHQXRogfYWfr2_6SZ_XSZaQy8vk1_QWx8SjQ4t01_o-YaLBXgfnT8lRo7uIZ3ufkpf7u9X8MVssH57mN4vMqKLMhJTKFg1UmtlUaADRlNzwgqmKy7Kx6woROColZoW1lWQzDmtrFUcrtRBTcvFPNcHHGLCpd8FtdRhrYPXfUbWs90eJXyRZWvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</creator><creatorcontrib>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</creatorcontrib><description>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0040546</identifier><language>eng</language><ispartof>Applied physics letters, 2021-02, Vol.118 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</citedby><cites>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</cites><orcidid>0000-0002-3198-2014 ; 0000-0002-3190-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Liu, Xiangyang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Feng, Yingjie</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><title>Applied physics letters</title><description>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkL9OwzAYxC0EEqUw8AZeEUrwZ8dxwwYV_6SKDnRhilz7S2OUxpUdEHkDZh6RJ8GILne60-k3HCHnwHJgpbiSOWMFk0V5QCbAlMoEwOyQTBhjIisrCcfkJMa3FCUXYkJ2qxbDVnfU-N6-m8F9uGGkW2-xc_2G-p62btN2I7Uu-mAxoKUmjHHQXRogfYWfr2_6SZ_XSZaQy8vk1_QWx8SjQ4t01_o-YaLBXgfnT8lRo7uIZ3ufkpf7u9X8MVssH57mN4vMqKLMhJTKFg1UmtlUaADRlNzwgqmKy7Kx6woROColZoW1lWQzDmtrFUcrtRBTcvFPNcHHGLCpd8FtdRhrYPXfUbWs90eJXyRZWvI</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Huang, Muzhang</creator><creator>Liu, Xiangyang</creator><creator>Zhang, Peng</creator><creator>Qian, Xin</creator><creator>Feng, Yingjie</creator><creator>Li, Zheng</creator><creator>Pan, Wei</creator><creator>Wan, Chunlei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-3190-9239</orcidid></search><sort><creationdate>20210215</creationdate><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><author>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Liu, Xiangyang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Feng, Yingjie</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Muzhang</au><au>Liu, Xiangyang</au><au>Zhang, Peng</au><au>Qian, Xin</au><au>Feng, Yingjie</au><au>Li, Zheng</au><au>Pan, Wei</au><au>Wan, Chunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</atitle><jtitle>Applied physics letters</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>118</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</abstract><doi>10.1063/5.0040546</doi><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-3190-9239</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-02, Vol.118 (7)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0040546
source AIP Journals Complete; Alma/SFX Local Collection
title Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20modeling%20on%20highly%20disordered%20crystalline%20Y1%E2%88%92%20x%20Nb%20x%20O1.5+%20x%20:%20Beyond%20the%20phonon%20scenario&rft.jtitle=Applied%20physics%20letters&rft.au=Huang,%20Muzhang&rft.date=2021-02-15&rft.volume=118&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/5.0040546&rft_dat=%3Ccrossref%3E10_1063_5_0040546%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true