Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario
Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-02, Vol.118 (7) |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | Huang, Muzhang Liu, Xiangyang Zhang, Peng Qian, Xin Feng, Yingjie Li, Zheng Pan, Wei Wan, Chunlei |
description | Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x. |
doi_str_mv | 10.1063/5.0040546 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0040546</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1063_5_0040546</sourcerecordid><originalsourceid>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</originalsourceid><addsrcrecordid>eNotkL9OwzAYxC0EEqUw8AZeEUrwZ8dxwwYV_6SKDnRhilz7S2OUxpUdEHkDZh6RJ8GILne60-k3HCHnwHJgpbiSOWMFk0V5QCbAlMoEwOyQTBhjIisrCcfkJMa3FCUXYkJ2qxbDVnfU-N6-m8F9uGGkW2-xc_2G-p62btN2I7Uu-mAxoKUmjHHQXRogfYWfr2_6SZ_XSZaQy8vk1_QWx8SjQ4t01_o-YaLBXgfnT8lRo7uIZ3ufkpf7u9X8MVssH57mN4vMqKLMhJTKFg1UmtlUaADRlNzwgqmKy7Kx6woROColZoW1lWQzDmtrFUcrtRBTcvFPNcHHGLCpd8FtdRhrYPXfUbWs90eJXyRZWvI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</creator><creatorcontrib>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</creatorcontrib><description>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0040546</identifier><language>eng</language><ispartof>Applied physics letters, 2021-02, Vol.118 (7)</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</citedby><cites>FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</cites><orcidid>0000-0002-3198-2014 ; 0000-0002-3190-9239</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Liu, Xiangyang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Feng, Yingjie</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><title>Applied physics letters</title><description>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</description><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotkL9OwzAYxC0EEqUw8AZeEUrwZ8dxwwYV_6SKDnRhilz7S2OUxpUdEHkDZh6RJ8GILne60-k3HCHnwHJgpbiSOWMFk0V5QCbAlMoEwOyQTBhjIisrCcfkJMa3FCUXYkJ2qxbDVnfU-N6-m8F9uGGkW2-xc_2G-p62btN2I7Uu-mAxoKUmjHHQXRogfYWfr2_6SZ_XSZaQy8vk1_QWx8SjQ4t01_o-YaLBXgfnT8lRo7uIZ3ufkpf7u9X8MVssH57mN4vMqKLMhJTKFg1UmtlUaADRlNzwgqmKy7Kx6woROColZoW1lWQzDmtrFUcrtRBTcvFPNcHHGLCpd8FtdRhrYPXfUbWs90eJXyRZWvI</recordid><startdate>20210215</startdate><enddate>20210215</enddate><creator>Huang, Muzhang</creator><creator>Liu, Xiangyang</creator><creator>Zhang, Peng</creator><creator>Qian, Xin</creator><creator>Feng, Yingjie</creator><creator>Li, Zheng</creator><creator>Pan, Wei</creator><creator>Wan, Chunlei</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-3190-9239</orcidid></search><sort><creationdate>20210215</creationdate><title>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</title><author>Huang, Muzhang ; Liu, Xiangyang ; Zhang, Peng ; Qian, Xin ; Feng, Yingjie ; Li, Zheng ; Pan, Wei ; Wan, Chunlei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c746-3557d4f19a0dc74a113f62c24079256fdb9ee12e77384dd950821bdd72ed5a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Muzhang</creatorcontrib><creatorcontrib>Liu, Xiangyang</creatorcontrib><creatorcontrib>Zhang, Peng</creatorcontrib><creatorcontrib>Qian, Xin</creatorcontrib><creatorcontrib>Feng, Yingjie</creatorcontrib><creatorcontrib>Li, Zheng</creatorcontrib><creatorcontrib>Pan, Wei</creatorcontrib><creatorcontrib>Wan, Chunlei</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Muzhang</au><au>Liu, Xiangyang</au><au>Zhang, Peng</au><au>Qian, Xin</au><au>Feng, Yingjie</au><au>Li, Zheng</au><au>Pan, Wei</au><au>Wan, Chunlei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario</atitle><jtitle>Applied physics letters</jtitle><date>2021-02-15</date><risdate>2021</risdate><volume>118</volume><issue>7</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><abstract>Understanding the thermal conductivity of highly disordered materials has received growing interest. However, conventional thermal conductivity models fail in these materials due to the breakdown of the “phonon” image caused by the disorder of interatomic force constant. In this work, a quantitative thermal conductivity model is proposed based on “propagon” and “diffuson,” which can better describe the lattice vibrational modes in disordered materials. Lattice dynamics analysis is performed to investigate the vibrational modes in the disordered solid solution Y1−xNbxO1.5+x. The contribution to thermal conductivity from the propagons, which exhibit phonon-like high eigenvector periodicity, is calculated by the Debye–Klemens–Callaway equation. The contribution from diffusons, which exhibit low eigenvector periodicity, is calculated by Cahill's equation. The proposed thermal conductivity model produces an accurate temperature dependence for the Y1−xNbxO1.5+x that cannot be attained in the conventional models. Both the lattice dynamics analysis and thermal conductivity fitting suggest a decreasing trend with the Nb content for the propagon modes in Y1−xNbxO1.5+x.</abstract><doi>10.1063/5.0040546</doi><orcidid>https://orcid.org/0000-0002-3198-2014</orcidid><orcidid>https://orcid.org/0000-0002-3190-9239</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-02, Vol.118 (7) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0040546 |
source | AIP Journals Complete; Alma/SFX Local Collection |
title | Thermal conductivity modeling on highly disordered crystalline Y1− x Nb x O1.5+ x : Beyond the phonon scenario |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A33%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20modeling%20on%20highly%20disordered%20crystalline%20Y1%E2%88%92%20x%20Nb%20x%20O1.5+%20x%20:%20Beyond%20the%20phonon%20scenario&rft.jtitle=Applied%20physics%20letters&rft.au=Huang,%20Muzhang&rft.date=2021-02-15&rft.volume=118&rft.issue=7&rft.issn=0003-6951&rft.eissn=1077-3118&rft_id=info:doi/10.1063/5.0040546&rft_dat=%3Ccrossref%3E10_1063_5_0040546%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |