On formation of dry spots in heated liquid films

Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2021-02, Vol.33 (2)
Hauptverfasser: Fedorchenko, A. I., Hruby, J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page
container_title Physics of fluids (1994)
container_volume 33
creator Fedorchenko, A. I.
Hruby, J.
description Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.
doi_str_mv 10.1063/5.0035547
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0035547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485301952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZI0yeYoxS8o9KLnkM0mmNJutkkq9N-7dQvePc0cHt5hXoRuCcwICPbIZwCM87k8QxMCtaqkEOL8uEuohGDkEl3lvIZBKSomCFYd9jFtTQmxw9HjNh1w7mPJOHT4y5niWrwJu31osQ-bbb5GF95ssrs5zSn6fHn-WLxVy9Xr--JpWVlGZanaFhiR0gpl1dwp2TCiOBhuGrBgpOTOAzGSGl9bKcAoQjkxtBYN1JyAZ1N0N-b2Ke72Lhe9jvvUDSc1ndecwZBHB3U_Kptizsl53aewNemgCehjIZrrUyGDfRhttqH8_vs__B3TH9R969kPPjxr_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485301952</pqid></control><display><type>article</type><title>On formation of dry spots in heated liquid films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fedorchenko, A. I. ; Hruby, J.</creator><creatorcontrib>Fedorchenko, A. I. ; Hruby, J.</creatorcontrib><description>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q &lt; qcr) and stable or supercritical at q &gt; qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q &lt; qcr) and stable or supercritical at q &gt; qcr. At q &lt; qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0035547</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convolution ; Drying ; Film thickness ; Flow velocity ; Fluid dynamics ; Free surfaces ; Frying ; Partitions ; Perturbation methods ; Physics ; Rupturing ; Solid surfaces ; Step functions ; Sunflower oil ; Sunflowers ; Temperature distribution ; Thermocapillary convection</subject><ispartof>Physics of fluids (1994), 2021-02, Vol.33 (2)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</citedby><cites>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</cites><orcidid>0000-0002-4254-8627 ; 0000-0002-9346-698X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Fedorchenko, A. I.</creatorcontrib><creatorcontrib>Hruby, J.</creatorcontrib><title>On formation of dry spots in heated liquid films</title><title>Physics of fluids (1994)</title><description>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q &lt; qcr) and stable or supercritical at q &gt; qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q &lt; qcr) and stable or supercritical at q &gt; qcr. At q &lt; qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</description><subject>Convolution</subject><subject>Drying</subject><subject>Film thickness</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Frying</subject><subject>Partitions</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Rupturing</subject><subject>Solid surfaces</subject><subject>Step functions</subject><subject>Sunflower oil</subject><subject>Sunflowers</subject><subject>Temperature distribution</subject><subject>Thermocapillary convection</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZI0yeYoxS8o9KLnkM0mmNJutkkq9N-7dQvePc0cHt5hXoRuCcwICPbIZwCM87k8QxMCtaqkEOL8uEuohGDkEl3lvIZBKSomCFYd9jFtTQmxw9HjNh1w7mPJOHT4y5niWrwJu31osQ-bbb5GF95ssrs5zSn6fHn-WLxVy9Xr--JpWVlGZanaFhiR0gpl1dwp2TCiOBhuGrBgpOTOAzGSGl9bKcAoQjkxtBYN1JyAZ1N0N-b2Ke72Lhe9jvvUDSc1ndecwZBHB3U_Kptizsl53aewNemgCehjIZrrUyGDfRhttqH8_vs__B3TH9R969kPPjxr_g</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fedorchenko, A. I.</creator><creator>Hruby, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4254-8627</orcidid><orcidid>https://orcid.org/0000-0002-9346-698X</orcidid></search><sort><creationdate>20210201</creationdate><title>On formation of dry spots in heated liquid films</title><author>Fedorchenko, A. I. ; Hruby, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Drying</topic><topic>Film thickness</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Frying</topic><topic>Partitions</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Rupturing</topic><topic>Solid surfaces</topic><topic>Step functions</topic><topic>Sunflower oil</topic><topic>Sunflowers</topic><topic>Temperature distribution</topic><topic>Thermocapillary convection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorchenko, A. I.</creatorcontrib><creatorcontrib>Hruby, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorchenko, A. I.</au><au>Hruby, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On formation of dry spots in heated liquid films</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q &lt; qcr) and stable or supercritical at q &gt; qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q &lt; qcr) and stable or supercritical at q &gt; qcr. At q &lt; qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0035547</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4254-8627</orcidid><orcidid>https://orcid.org/0000-0002-9346-698X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2021-02, Vol.33 (2)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0035547
source AIP Journals Complete; Alma/SFX Local Collection
subjects Convolution
Drying
Film thickness
Flow velocity
Fluid dynamics
Free surfaces
Frying
Partitions
Perturbation methods
Physics
Rupturing
Solid surfaces
Step functions
Sunflower oil
Sunflowers
Temperature distribution
Thermocapillary convection
title On formation of dry spots in heated liquid films
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20formation%20of%20dry%20spots%20in%20heated%20liquid%20films&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Fedorchenko,%20A.%20I.&rft.date=2021-02-01&rft.volume=33&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0035547&rft_dat=%3Cproquest_cross%3E2485301952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485301952&rft_id=info:pmid/&rfr_iscdi=true