On formation of dry spots in heated liquid films
Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed...
Gespeichert in:
Veröffentlicht in: | Physics of fluids (1994) 2021-02, Vol.33 (2) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | |
container_title | Physics of fluids (1994) |
container_volume | 33 |
creator | Fedorchenko, A. I. Hruby, J. |
description | Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile. |
doi_str_mv | 10.1063/5.0035547 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0035547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2485301952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZI0yeYoxS8o9KLnkM0mmNJutkkq9N-7dQvePc0cHt5hXoRuCcwICPbIZwCM87k8QxMCtaqkEOL8uEuohGDkEl3lvIZBKSomCFYd9jFtTQmxw9HjNh1w7mPJOHT4y5niWrwJu31osQ-bbb5GF95ssrs5zSn6fHn-WLxVy9Xr--JpWVlGZanaFhiR0gpl1dwp2TCiOBhuGrBgpOTOAzGSGl9bKcAoQjkxtBYN1JyAZ1N0N-b2Ke72Lhe9jvvUDSc1ndecwZBHB3U_Kptizsl53aewNemgCehjIZrrUyGDfRhttqH8_vs__B3TH9R969kPPjxr_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2485301952</pqid></control><display><type>article</type><title>On formation of dry spots in heated liquid films</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Fedorchenko, A. I. ; Hruby, J.</creator><creatorcontrib>Fedorchenko, A. I. ; Hruby, J.</creatorcontrib><description>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0035547</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Convolution ; Drying ; Film thickness ; Flow velocity ; Fluid dynamics ; Free surfaces ; Frying ; Partitions ; Perturbation methods ; Physics ; Rupturing ; Solid surfaces ; Step functions ; Sunflower oil ; Sunflowers ; Temperature distribution ; Thermocapillary convection</subject><ispartof>Physics of fluids (1994), 2021-02, Vol.33 (2)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</citedby><cites>FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</cites><orcidid>0000-0002-4254-8627 ; 0000-0002-9346-698X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4497,27903,27904</link.rule.ids></links><search><creatorcontrib>Fedorchenko, A. I.</creatorcontrib><creatorcontrib>Hruby, J.</creatorcontrib><title>On formation of dry spots in heated liquid films</title><title>Physics of fluids (1994)</title><description>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</description><subject>Convolution</subject><subject>Drying</subject><subject>Film thickness</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Free surfaces</subject><subject>Frying</subject><subject>Partitions</subject><subject>Perturbation methods</subject><subject>Physics</subject><subject>Rupturing</subject><subject>Solid surfaces</subject><subject>Step functions</subject><subject>Sunflower oil</subject><subject>Sunflowers</subject><subject>Temperature distribution</subject><subject>Thermocapillary convection</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwdZI0yeYoxS8o9KLnkM0mmNJutkkq9N-7dQvePc0cHt5hXoRuCcwICPbIZwCM87k8QxMCtaqkEOL8uEuohGDkEl3lvIZBKSomCFYd9jFtTQmxw9HjNh1w7mPJOHT4y5niWrwJu31osQ-bbb5GF95ssrs5zSn6fHn-WLxVy9Xr--JpWVlGZanaFhiR0gpl1dwp2TCiOBhuGrBgpOTOAzGSGl9bKcAoQjkxtBYN1JyAZ1N0N-b2Ke72Lhe9jvvUDSc1ndecwZBHB3U_Kptizsl53aewNemgCehjIZrrUyGDfRhttqH8_vs__B3TH9R969kPPjxr_g</recordid><startdate>20210201</startdate><enddate>20210201</enddate><creator>Fedorchenko, A. I.</creator><creator>Hruby, J.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-4254-8627</orcidid><orcidid>https://orcid.org/0000-0002-9346-698X</orcidid></search><sort><creationdate>20210201</creationdate><title>On formation of dry spots in heated liquid films</title><author>Fedorchenko, A. I. ; Hruby, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-dd03177c69c94e97b31950a5ab0c0a775ef01a72af8c760a91251a286b08510f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>Drying</topic><topic>Film thickness</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Free surfaces</topic><topic>Frying</topic><topic>Partitions</topic><topic>Perturbation methods</topic><topic>Physics</topic><topic>Rupturing</topic><topic>Solid surfaces</topic><topic>Step functions</topic><topic>Sunflower oil</topic><topic>Sunflowers</topic><topic>Temperature distribution</topic><topic>Thermocapillary convection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fedorchenko, A. I.</creatorcontrib><creatorcontrib>Hruby, J.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fedorchenko, A. I.</au><au>Hruby, J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On formation of dry spots in heated liquid films</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2021-02-01</date><risdate>2021</risdate><volume>33</volume><issue>2</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>Here, the phenomenon of food sticking when frying in a frying pan is experimentally explained. Thermocapillary convection causes a dry spot formation in the center of the frying pan upon heating of the sunflower oil film. It is shown that the speed of formation of a dry spot is similar to the speed of receding motion of the edge of a droplet upon impact and spreading on a solid surface. This allows theoretical determination of the speed of dewetting. For the thin liquid film flowing vertically over a solid surface, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical, when small perturbation of the film free surface results in the film rupture (q < qcr) and stable or supercritical at q > qcr. For the falling thin liquid film, the critical volumetric flow rate qcr partitions two regimes: metastable or subcritical (q < qcr) and stable or supercritical at q > qcr. At q < qcr, small deformations of the film free surface result in the film rupture. For the case of the temperature distribution in the form of a unit step function, the fundamental solution G1(x) describing the deformation of the film free surface has been derived by the perturbation technique. This solution is important by itself since it describes the most “dangerous” film surface profile at a prescribed value of the temperature drop. For an arbitrary surface temperature distribution θ (ξ), the convolution of G1(ξ) and θ ′(ξ) yields the film thickness profile.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0035547</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-4254-8627</orcidid><orcidid>https://orcid.org/0000-0002-9346-698X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1070-6631 |
ispartof | Physics of fluids (1994), 2021-02, Vol.33 (2) |
issn | 1070-6631 1089-7666 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0035547 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Convolution Drying Film thickness Flow velocity Fluid dynamics Free surfaces Frying Partitions Perturbation methods Physics Rupturing Solid surfaces Step functions Sunflower oil Sunflowers Temperature distribution Thermocapillary convection |
title | On formation of dry spots in heated liquid films |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T15%3A59%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20formation%20of%20dry%20spots%20in%20heated%20liquid%20films&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Fedorchenko,%20A.%20I.&rft.date=2021-02-01&rft.volume=33&rft.issue=2&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0035547&rft_dat=%3Cproquest_cross%3E2485301952%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2485301952&rft_id=info:pmid/&rfr_iscdi=true |