The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures
While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081 ± 0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was fo...
Gespeichert in:
Veröffentlicht in: | Applied physics letters 2021-05, Vol.118 (20) |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Applied physics letters |
container_volume | 118 |
creator | McQuade, Gregor A. Plaut, Annette S. Usher, Alan Martin, Jens |
description | While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of
−
0.081
±
0.003
%. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be
(
−
3.2
±
0.2
)
×
10
−
6
K
−
1 for monolayers,
(
−
3.4
±
0.4
)
×
10
−
6
K
−
1 for bilayers, and
(
−
3.8
±
0.6
)
×
10
−
6
K
−
1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene. |
doi_str_mv | 10.1063/5.0035391 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0035391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528285389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAk-LWzWazmx5F_AcFL_W8ZLOTNqWbrJO02M_hFzalBe_CwMx7_HgDj5Brlk9YXvEHMclzLviUnZARy-s644zJUzLKk51VU8HOyUUIqyRFwfmI_MyXQOMSsFdrCt-DcsF6R7UHY6y24CL1hvbe-bXaAd7T1h4P5Toa8aDoAtWwBAe0A7Rb6KhB3-9zaYiorKPWdRud_HaXsv3augWNnmrc-QU4q2mEfgBUcYMQLsmZUesAV8c9Jp8vz_Ont2z28fr-9DjLdFnImFW6FaUsWFWVSnd1bRgwaUzH65ZLDaLkipu2BC5qXuhKtqwoq7IuAXQaxvmY3BxyB_RfGwixWfkNuvSyKUQhCym4nCbq9kBp9CEgmGZA2yvcNSxv9p03ojl2nti7Axu0jSqmJv8Hbz3-gc3QGf4LCdeSvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528285389</pqid></control><display><type>article</type><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</creator><creatorcontrib>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</creatorcontrib><description>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of
−
0.081
±
0.003
%. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be
(
−
3.2
±
0.2
)
×
10
−
6
K
−
1 for monolayers,
(
−
3.4
±
0.4
)
×
10
−
6
K
−
1 for bilayers, and
(
−
3.8
±
0.6
)
×
10
−
6
K
−
1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0035391</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bilayers ; Cryogenic cooling ; Cryogenic temperature ; Electric contacts ; Flakes ; Graphene ; Monolayers ; Raman spectroscopy ; Room temperature ; Temperature ; Temperature dependence ; Thermal expansion ; Thickness</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (20)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</citedby><cites>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</cites><orcidid>0000-0001-8715-443X ; 0000-0003-0534-1595 ; 0000-0001-9548-2839 ; 0000-0002-8004-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0035391$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>McQuade, Gregor A.</creatorcontrib><creatorcontrib>Plaut, Annette S.</creatorcontrib><creatorcontrib>Usher, Alan</creatorcontrib><creatorcontrib>Martin, Jens</creatorcontrib><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><title>Applied physics letters</title><description>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of
−
0.081
±
0.003
%. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be
(
−
3.2
±
0.2
)
×
10
−
6
K
−
1 for monolayers,
(
−
3.4
±
0.4
)
×
10
−
6
K
−
1 for bilayers, and
(
−
3.8
±
0.6
)
×
10
−
6
K
−
1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</description><subject>Applied physics</subject><subject>Bilayers</subject><subject>Cryogenic cooling</subject><subject>Cryogenic temperature</subject><subject>Electric contacts</subject><subject>Flakes</subject><subject>Graphene</subject><subject>Monolayers</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAk-LWzWazmx5F_AcFL_W8ZLOTNqWbrJO02M_hFzalBe_CwMx7_HgDj5Brlk9YXvEHMclzLviUnZARy-s644zJUzLKk51VU8HOyUUIqyRFwfmI_MyXQOMSsFdrCt-DcsF6R7UHY6y24CL1hvbe-bXaAd7T1h4P5Toa8aDoAtWwBAe0A7Rb6KhB3-9zaYiorKPWdRud_HaXsv3augWNnmrc-QU4q2mEfgBUcYMQLsmZUesAV8c9Jp8vz_Ont2z28fr-9DjLdFnImFW6FaUsWFWVSnd1bRgwaUzH65ZLDaLkipu2BC5qXuhKtqwoq7IuAXQaxvmY3BxyB_RfGwixWfkNuvSyKUQhCym4nCbq9kBp9CEgmGZA2yvcNSxv9p03ojl2nti7Axu0jSqmJv8Hbz3-gc3QGf4LCdeSvw</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>McQuade, Gregor A.</creator><creator>Plaut, Annette S.</creator><creator>Usher, Alan</creator><creator>Martin, Jens</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8715-443X</orcidid><orcidid>https://orcid.org/0000-0003-0534-1595</orcidid><orcidid>https://orcid.org/0000-0001-9548-2839</orcidid><orcidid>https://orcid.org/0000-0002-8004-0189</orcidid></search><sort><creationdate>20210517</creationdate><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><author>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bilayers</topic><topic>Cryogenic cooling</topic><topic>Cryogenic temperature</topic><topic>Electric contacts</topic><topic>Flakes</topic><topic>Graphene</topic><topic>Monolayers</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McQuade, Gregor A.</creatorcontrib><creatorcontrib>Plaut, Annette S.</creatorcontrib><creatorcontrib>Usher, Alan</creatorcontrib><creatorcontrib>Martin, Jens</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McQuade, Gregor A.</au><au>Plaut, Annette S.</au><au>Usher, Alan</au><au>Martin, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-17</date><risdate>2021</risdate><volume>118</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of
−
0.081
±
0.003
%. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be
(
−
3.2
±
0.2
)
×
10
−
6
K
−
1 for monolayers,
(
−
3.4
±
0.4
)
×
10
−
6
K
−
1 for bilayers, and
(
−
3.8
±
0.6
)
×
10
−
6
K
−
1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0035391</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8715-443X</orcidid><orcidid>https://orcid.org/0000-0003-0534-1595</orcidid><orcidid>https://orcid.org/0000-0001-9548-2839</orcidid><orcidid>https://orcid.org/0000-0002-8004-0189</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-6951 |
ispartof | Applied physics letters, 2021-05, Vol.118 (20) |
issn | 0003-6951 1077-3118 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0035391 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Bilayers Cryogenic cooling Cryogenic temperature Electric contacts Flakes Graphene Monolayers Raman spectroscopy Room temperature Temperature Temperature dependence Thermal expansion Thickness |
title | The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thermal%20expansion%20coefficient%20of%20monolayer,%20bilayer,%20and%20trilayer%20graphene%20derived%20from%20the%20strain%20induced%20by%20cooling%20to%20cryogenic%20temperatures&rft.jtitle=Applied%20physics%20letters&rft.au=McQuade,%20Gregor%20A.&rft.date=2021-05-17&rft.volume=118&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0035391&rft_dat=%3Cproquest_cross%3E2528285389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528285389&rft_id=info:pmid/&rfr_iscdi=true |