The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures

While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081   ±   0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-05, Vol.118 (20)
Hauptverfasser: McQuade, Gregor A., Plaut, Annette S., Usher, Alan, Martin, Jens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 20
container_start_page
container_title Applied physics letters
container_volume 118
creator McQuade, Gregor A.
Plaut, Annette S.
Usher, Alan
Martin, Jens
description While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081   ±   0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be ( − 3.2   ±   0.2 ) × 10 − 6   K − 1 for monolayers, ( − 3.4   ±   0.4 ) × 10 − 6   K − 1 for bilayers, and ( − 3.8   ±   0.6 ) × 10 − 6   K − 1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.
doi_str_mv 10.1063/5.0035391
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0035391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2528285389</sourcerecordid><originalsourceid>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</originalsourceid><addsrcrecordid>eNqdkE9LAzEQxYMoWKsHv0HAk-LWzWazmx5F_AcFL_W8ZLOTNqWbrJO02M_hFzalBe_CwMx7_HgDj5Brlk9YXvEHMclzLviUnZARy-s644zJUzLKk51VU8HOyUUIqyRFwfmI_MyXQOMSsFdrCt-DcsF6R7UHY6y24CL1hvbe-bXaAd7T1h4P5Toa8aDoAtWwBAe0A7Rb6KhB3-9zaYiorKPWdRud_HaXsv3augWNnmrc-QU4q2mEfgBUcYMQLsmZUesAV8c9Jp8vz_Ont2z28fr-9DjLdFnImFW6FaUsWFWVSnd1bRgwaUzH65ZLDaLkipu2BC5qXuhKtqwoq7IuAXQaxvmY3BxyB_RfGwixWfkNuvSyKUQhCym4nCbq9kBp9CEgmGZA2yvcNSxv9p03ojl2nti7Axu0jSqmJv8Hbz3-gc3QGf4LCdeSvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2528285389</pqid></control><display><type>article</type><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</creator><creatorcontrib>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</creatorcontrib><description>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081   ±   0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be ( − 3.2   ±   0.2 ) × 10 − 6   K − 1 for monolayers, ( − 3.4   ±   0.4 ) × 10 − 6   K − 1 for bilayers, and ( − 3.8   ±   0.6 ) × 10 − 6   K − 1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</description><identifier>ISSN: 0003-6951</identifier><identifier>EISSN: 1077-3118</identifier><identifier>DOI: 10.1063/5.0035391</identifier><identifier>CODEN: APPLAB</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Bilayers ; Cryogenic cooling ; Cryogenic temperature ; Electric contacts ; Flakes ; Graphene ; Monolayers ; Raman spectroscopy ; Room temperature ; Temperature ; Temperature dependence ; Thermal expansion ; Thickness</subject><ispartof>Applied physics letters, 2021-05, Vol.118 (20)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</citedby><cites>FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</cites><orcidid>0000-0001-8715-443X ; 0000-0003-0534-1595 ; 0000-0001-9548-2839 ; 0000-0002-8004-0189</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/apl/article-lookup/doi/10.1063/5.0035391$$EHTML$$P50$$Gscitation$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>McQuade, Gregor A.</creatorcontrib><creatorcontrib>Plaut, Annette S.</creatorcontrib><creatorcontrib>Usher, Alan</creatorcontrib><creatorcontrib>Martin, Jens</creatorcontrib><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><title>Applied physics letters</title><description>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081   ±   0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be ( − 3.2   ±   0.2 ) × 10 − 6   K − 1 for monolayers, ( − 3.4   ±   0.4 ) × 10 − 6   K − 1 for bilayers, and ( − 3.8   ±   0.6 ) × 10 − 6   K − 1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</description><subject>Applied physics</subject><subject>Bilayers</subject><subject>Cryogenic cooling</subject><subject>Cryogenic temperature</subject><subject>Electric contacts</subject><subject>Flakes</subject><subject>Graphene</subject><subject>Monolayers</subject><subject>Raman spectroscopy</subject><subject>Room temperature</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Thermal expansion</subject><subject>Thickness</subject><issn>0003-6951</issn><issn>1077-3118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqdkE9LAzEQxYMoWKsHv0HAk-LWzWazmx5F_AcFL_W8ZLOTNqWbrJO02M_hFzalBe_CwMx7_HgDj5Brlk9YXvEHMclzLviUnZARy-s644zJUzLKk51VU8HOyUUIqyRFwfmI_MyXQOMSsFdrCt-DcsF6R7UHY6y24CL1hvbe-bXaAd7T1h4P5Toa8aDoAtWwBAe0A7Rb6KhB3-9zaYiorKPWdRud_HaXsv3augWNnmrc-QU4q2mEfgBUcYMQLsmZUesAV8c9Jp8vz_Ont2z28fr-9DjLdFnImFW6FaUsWFWVSnd1bRgwaUzH65ZLDaLkipu2BC5qXuhKtqwoq7IuAXQaxvmY3BxyB_RfGwixWfkNuvSyKUQhCym4nCbq9kBp9CEgmGZA2yvcNSxv9p03ojl2nti7Axu0jSqmJv8Hbz3-gc3QGf4LCdeSvw</recordid><startdate>20210517</startdate><enddate>20210517</enddate><creator>McQuade, Gregor A.</creator><creator>Plaut, Annette S.</creator><creator>Usher, Alan</creator><creator>Martin, Jens</creator><general>American Institute of Physics</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8715-443X</orcidid><orcidid>https://orcid.org/0000-0003-0534-1595</orcidid><orcidid>https://orcid.org/0000-0001-9548-2839</orcidid><orcidid>https://orcid.org/0000-0002-8004-0189</orcidid></search><sort><creationdate>20210517</creationdate><title>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</title><author>McQuade, Gregor A. ; Plaut, Annette S. ; Usher, Alan ; Martin, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c428t-6cb54821664acd77f1e18ffd37b38ce543a3fb4e35732c68b1246474eeceec133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Applied physics</topic><topic>Bilayers</topic><topic>Cryogenic cooling</topic><topic>Cryogenic temperature</topic><topic>Electric contacts</topic><topic>Flakes</topic><topic>Graphene</topic><topic>Monolayers</topic><topic>Raman spectroscopy</topic><topic>Room temperature</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Thermal expansion</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McQuade, Gregor A.</creatorcontrib><creatorcontrib>Plaut, Annette S.</creatorcontrib><creatorcontrib>Usher, Alan</creatorcontrib><creatorcontrib>Martin, Jens</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Applied physics letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McQuade, Gregor A.</au><au>Plaut, Annette S.</au><au>Usher, Alan</au><au>Martin, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures</atitle><jtitle>Applied physics letters</jtitle><date>2021-05-17</date><risdate>2021</risdate><volume>118</volume><issue>20</issue><issn>0003-6951</issn><eissn>1077-3118</eissn><coden>APPLAB</coden><abstract>While thermally cycling monolayer, bilayer, and trilayer graphene between 5 K and 300 K, Raman spectroscopy has shown that cooling to 5 K induces a strain in these graphene flakes of − 0.081   ±   0.003 %. This strain was used to measure the graphene thermal expansion coefficient (TEC), which was found to be ( − 3.2   ±   0.2 ) × 10 − 6   K − 1 for monolayers, ( − 3.4   ±   0.4 ) × 10 − 6   K − 1 for bilayers, and ( − 3.8   ±   0.6 ) × 10 − 6   K − 1 for trilayers at room temperature. The TEC showed a similar temperature dependence across all graphene thicknesses and was found to be in good agreement with theoretical predictions. This study, thus, represents the first measurement of the TEC of bilayer and trilayer graphene. Modification of graphene flakes of all thicknesses with various electrical contact designs was found to have no significant impact on the resulting strain, and thus the TEC, compared to the pristine graphene.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0035391</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-8715-443X</orcidid><orcidid>https://orcid.org/0000-0003-0534-1595</orcidid><orcidid>https://orcid.org/0000-0001-9548-2839</orcidid><orcidid>https://orcid.org/0000-0002-8004-0189</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-6951
ispartof Applied physics letters, 2021-05, Vol.118 (20)
issn 0003-6951
1077-3118
language eng
recordid cdi_crossref_primary_10_1063_5_0035391
source AIP Journals Complete; Alma/SFX Local Collection
subjects Applied physics
Bilayers
Cryogenic cooling
Cryogenic temperature
Electric contacts
Flakes
Graphene
Monolayers
Raman spectroscopy
Room temperature
Temperature
Temperature dependence
Thermal expansion
Thickness
title The thermal expansion coefficient of monolayer, bilayer, and trilayer graphene derived from the strain induced by cooling to cryogenic temperatures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T12%3A57%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20thermal%20expansion%20coefficient%20of%20monolayer,%20bilayer,%20and%20trilayer%20graphene%20derived%20from%20the%20strain%20induced%20by%20cooling%20to%20cryogenic%20temperatures&rft.jtitle=Applied%20physics%20letters&rft.au=McQuade,%20Gregor%20A.&rft.date=2021-05-17&rft.volume=118&rft.issue=20&rft.issn=0003-6951&rft.eissn=1077-3118&rft.coden=APPLAB&rft_id=info:doi/10.1063/5.0035391&rft_dat=%3Cproquest_cross%3E2528285389%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2528285389&rft_id=info:pmid/&rfr_iscdi=true