The Young–Laplace equation for a solid–liquid interface

The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of chemical physics 2020-11, Vol.153 (19), p.191102-191102
Hauptverfasser: Montero de Hijes, P., Shi, K., Noya, E. G., Santiso, E. E., Gubbins, K. E., Sanz, E., Vega, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 191102
container_issue 19
container_start_page 191102
container_title The Journal of chemical physics
container_volume 153
creator Montero de Hijes, P.
Shi, K.
Noya, E. G.
Santiso, E. E.
Gubbins, K. E.
Sanz, E.
Vega, C.
description The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs.
doi_str_mv 10.1063/5.0032602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0032602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2462247708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c395t-870eb5cc7f97e42a72257bb84ccd5e8b77dec89150baeef25564fd49b61f128b3</originalsourceid><addsrcrecordid>eNp90MtKxDAUBuAgCo6jC9-g4EaFjidpcymuZPAGA27GhauQpolm6DSdpBXc-Q6-oU9ixxEFBVdncb7zc_gROsQwwcCyMzoByAgDsoVGGESRclbANhoBEJwWDNgu2otxAQCYk3yEzudPJnnwffP4_vo2U22ttEnMqled801ifUhUEn3tqmFdu1XvqsQ1nQl2cPtox6o6moOvOUb3V5fz6U06u7u-nV7MUp0VtEsFB1NSrbktuMmJ4oRQXpYi17qiRpScV0aLAlMolTGWUMpyW-VFybDFRJTZGB1vctvgV72JnVy6qE1dq8b4PkqSswzDcJUN9OgXXfg-NMN3a0VIzjmIQZ1slA4-xmCsbINbqvAiMch1jZLKrxoHe7qxUbvus5Vv_OzDD5RtZf_Df5M_AHm1gPs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2462247708</pqid></control><display><type>article</type><title>The Young–Laplace equation for a solid–liquid interface</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Montero de Hijes, P. ; Shi, K. ; Noya, E. G. ; Santiso, E. E. ; Gubbins, K. E. ; Sanz, E. ; Vega, C.</creator><creatorcontrib>Montero de Hijes, P. ; Shi, K. ; Noya, E. G. ; Santiso, E. E. ; Gubbins, K. E. ; Sanz, E. ; Vega, C.</creatorcontrib><description>The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs.</description><identifier>ISSN: 0021-9606</identifier><identifier>EISSN: 1089-7690</identifier><identifier>DOI: 10.1063/5.0032602</identifier><identifier>CODEN: JCPSA6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>External pressure ; Free energy ; Laplace equation ; Liquid-solid interfaces ; Nucleation ; Physics ; Thermodynamic equilibrium</subject><ispartof>The Journal of chemical physics, 2020-11, Vol.153 (19), p.191102-191102</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c395t-870eb5cc7f97e42a72257bb84ccd5e8b77dec89150baeef25564fd49b61f128b3</citedby><cites>FETCH-LOGICAL-c395t-870eb5cc7f97e42a72257bb84ccd5e8b77dec89150baeef25564fd49b61f128b3</cites><orcidid>0000-0001-6474-5835 ; 0000-0002-2417-9645 ; 0000-0003-0546-080X ; 0000-0002-6359-1026 ; 0000-0003-1768-8414 ; 0000-0001-8873-8445 ; 0000-0002-0297-1746</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jcp/article-lookup/doi/10.1063/5.0032602$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4497,27903,27904,76131</link.rule.ids></links><search><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Shi, K.</creatorcontrib><creatorcontrib>Noya, E. G.</creatorcontrib><creatorcontrib>Santiso, E. E.</creatorcontrib><creatorcontrib>Gubbins, K. E.</creatorcontrib><creatorcontrib>Sanz, E.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><title>The Young–Laplace equation for a solid–liquid interface</title><title>The Journal of chemical physics</title><description>The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs.</description><subject>External pressure</subject><subject>Free energy</subject><subject>Laplace equation</subject><subject>Liquid-solid interfaces</subject><subject>Nucleation</subject><subject>Physics</subject><subject>Thermodynamic equilibrium</subject><issn>0021-9606</issn><issn>1089-7690</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90MtKxDAUBuAgCo6jC9-g4EaFjidpcymuZPAGA27GhauQpolm6DSdpBXc-Q6-oU9ixxEFBVdncb7zc_gROsQwwcCyMzoByAgDsoVGGESRclbANhoBEJwWDNgu2otxAQCYk3yEzudPJnnwffP4_vo2U22ttEnMqled801ifUhUEn3tqmFdu1XvqsQ1nQl2cPtox6o6moOvOUb3V5fz6U06u7u-nV7MUp0VtEsFB1NSrbktuMmJ4oRQXpYi17qiRpScV0aLAlMolTGWUMpyW-VFybDFRJTZGB1vctvgV72JnVy6qE1dq8b4PkqSswzDcJUN9OgXXfg-NMN3a0VIzjmIQZ1slA4-xmCsbINbqvAiMch1jZLKrxoHe7qxUbvus5Vv_OzDD5RtZf_Df5M_AHm1gPs</recordid><startdate>20201121</startdate><enddate>20201121</enddate><creator>Montero de Hijes, P.</creator><creator>Shi, K.</creator><creator>Noya, E. G.</creator><creator>Santiso, E. E.</creator><creator>Gubbins, K. E.</creator><creator>Sanz, E.</creator><creator>Vega, C.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6474-5835</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000-0003-0546-080X</orcidid><orcidid>https://orcid.org/0000-0002-6359-1026</orcidid><orcidid>https://orcid.org/0000-0003-1768-8414</orcidid><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-0297-1746</orcidid></search><sort><creationdate>20201121</creationdate><title>The Young–Laplace equation for a solid–liquid interface</title><author>Montero de Hijes, P. ; Shi, K. ; Noya, E. G. ; Santiso, E. E. ; Gubbins, K. E. ; Sanz, E. ; Vega, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c395t-870eb5cc7f97e42a72257bb84ccd5e8b77dec89150baeef25564fd49b61f128b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>External pressure</topic><topic>Free energy</topic><topic>Laplace equation</topic><topic>Liquid-solid interfaces</topic><topic>Nucleation</topic><topic>Physics</topic><topic>Thermodynamic equilibrium</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Montero de Hijes, P.</creatorcontrib><creatorcontrib>Shi, K.</creatorcontrib><creatorcontrib>Noya, E. G.</creatorcontrib><creatorcontrib>Santiso, E. E.</creatorcontrib><creatorcontrib>Gubbins, K. E.</creatorcontrib><creatorcontrib>Sanz, E.</creatorcontrib><creatorcontrib>Vega, C.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>The Journal of chemical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Montero de Hijes, P.</au><au>Shi, K.</au><au>Noya, E. G.</au><au>Santiso, E. E.</au><au>Gubbins, K. E.</au><au>Sanz, E.</au><au>Vega, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Young–Laplace equation for a solid–liquid interface</atitle><jtitle>The Journal of chemical physics</jtitle><date>2020-11-21</date><risdate>2020</risdate><volume>153</volume><issue>19</issue><spage>191102</spage><epage>191102</epage><pages>191102-191102</pages><issn>0021-9606</issn><eissn>1089-7690</eissn><coden>JCPSA6</coden><abstract>The application of the Young–Laplace equation to a solid–liquid interface is considered. Computer simulations show that the pressure inside a solid cluster of hard spheres is smaller than the external pressure of the liquid (both for small and large clusters). This would suggest a negative value for the interfacial free energy. We show that in a Gibbsian description of the thermodynamics of a curved solid–liquid interface in equilibrium, the choice of the thermodynamic (rather than mechanical) pressure is required, as suggested by Tolman for the liquid–gas scenario. With this definition, the interfacial free energy is positive, and the values obtained are in excellent agreement with previous results from nucleation studies. Although, for a curved fluid–fluid interface, there is no distinction between mechanical and thermal pressures (for a sufficiently large inner phase), in the solid–liquid interface, they do not coincide, as hypothesized by Gibbs.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0032602</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6474-5835</orcidid><orcidid>https://orcid.org/0000-0002-2417-9645</orcidid><orcidid>https://orcid.org/0000-0003-0546-080X</orcidid><orcidid>https://orcid.org/0000-0002-6359-1026</orcidid><orcidid>https://orcid.org/0000-0003-1768-8414</orcidid><orcidid>https://orcid.org/0000-0001-8873-8445</orcidid><orcidid>https://orcid.org/0000-0002-0297-1746</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9606
ispartof The Journal of chemical physics, 2020-11, Vol.153 (19), p.191102-191102
issn 0021-9606
1089-7690
language eng
recordid cdi_crossref_primary_10_1063_5_0032602
source AIP Journals Complete; Alma/SFX Local Collection
subjects External pressure
Free energy
Laplace equation
Liquid-solid interfaces
Nucleation
Physics
Thermodynamic equilibrium
title The Young–Laplace equation for a solid–liquid interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T03%3A12%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Young%E2%80%93Laplace%20equation%20for%20a%20solid%E2%80%93liquid%20interface&rft.jtitle=The%20Journal%20of%20chemical%20physics&rft.au=Montero%20de%20Hijes,%20P.&rft.date=2020-11-21&rft.volume=153&rft.issue=19&rft.spage=191102&rft.epage=191102&rft.pages=191102-191102&rft.issn=0021-9606&rft.eissn=1089-7690&rft.coden=JCPSA6&rft_id=info:doi/10.1063/5.0032602&rft_dat=%3Cproquest_cross%3E2462247708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2462247708&rft_id=info:pmid/&rfr_iscdi=true