Fractional q-deformed chaotic maps: A weight function approach

The fractional derivative holds long-time memory effects or non-locality. It successfully depicts the dynamical systems with long-range interactions. However, it becomes challenging to investigate chaos in the deformed fractional discrete-time systems. This study turns to fractional quantum calculus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos (Woodbury, N.Y.) N.Y.), 2020-12, Vol.30 (12), p.121106-121106
Hauptverfasser: Wu, Guo-Cheng, Niyazi Çankaya, Mehmet, Banerjee, Santo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 121106
container_issue 12
container_start_page 121106
container_title Chaos (Woodbury, N.Y.)
container_volume 30
creator Wu, Guo-Cheng
Niyazi Çankaya, Mehmet
Banerjee, Santo
description The fractional derivative holds long-time memory effects or non-locality. It successfully depicts the dynamical systems with long-range interactions. However, it becomes challenging to investigate chaos in the deformed fractional discrete-time systems. This study turns to fractional quantum calculus on the time scale and reports chaos in fractional q-deformed maps. The discrete memory kernels are used, and a weight function approach is proposed for fractional modeling. Rich q-deformed dynamics are demonstrated, which shows the methodology’s efficiency.
doi_str_mv 10.1063/5.0030973
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0030973</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2467693878</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-a4a833bfd68e59cb5852980c024849ff6102cc84da1682a0ec0cc4c3eb5deb373</originalsourceid><addsrcrecordid>eNp90E9LwzAYBvAgitPpwS8gBS8qdL5p_jT1IIzhVBh40XNI09R1dEuXtIrf3tRNBUFPSeDH8755EDrBMMLAyRUbARDIUrKDDjCILE65SHb7O6MxZgADdOj9AgBwQtg-GhBCRHjgA3QzdUq3lV2pOlrHhSmtW5oi0nNl20pHS9X462gcvZnqZd5GZbf6xJFqGmeVnh-hvVLV3hxvzyF6nt4-Te7j2ePdw2Q8izURpI0VVYKQvCy4MCzTORMsyQRoSKigWVlyDInWghYKh80VGA1aU01MzgqTk5QM0fkmN4xdd8a3cll5beparYztvExoSmnG05QHevaLLmznwv96xVOeEZGKoC42SjvrvTOlbFy1VO5dYpB9qZLJbanBnm4TuzyU8y2_WgzgcgO8rlrVF_Rv2p_41bofKJuiJB8SUotx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2467693878</pqid></control><display><type>article</type><title>Fractional q-deformed chaotic maps: A weight function approach</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Wu, Guo-Cheng ; Niyazi Çankaya, Mehmet ; Banerjee, Santo</creator><creatorcontrib>Wu, Guo-Cheng ; Niyazi Çankaya, Mehmet ; Banerjee, Santo</creatorcontrib><description>The fractional derivative holds long-time memory effects or non-locality. It successfully depicts the dynamical systems with long-range interactions. However, it becomes challenging to investigate chaos in the deformed fractional discrete-time systems. This study turns to fractional quantum calculus on the time scale and reports chaos in fractional q-deformed maps. The discrete memory kernels are used, and a weight function approach is proposed for fractional modeling. Rich q-deformed dynamics are demonstrated, which shows the methodology’s efficiency.</description><identifier>ISSN: 1054-1500</identifier><identifier>EISSN: 1089-7682</identifier><identifier>DOI: 10.1063/5.0030973</identifier><identifier>PMID: 33380011</identifier><identifier>CODEN: CHAOEH</identifier><language>eng</language><publisher>United States: American Institute of Physics</publisher><subject>Chaos theory ; Deformation ; Discrete time systems ; Fractional calculus ; Weighting functions</subject><ispartof>Chaos (Woodbury, N.Y.), 2020-12, Vol.30 (12), p.121106-121106</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-a4a833bfd68e59cb5852980c024849ff6102cc84da1682a0ec0cc4c3eb5deb373</citedby><cites>FETCH-LOGICAL-c383t-a4a833bfd68e59cb5852980c024849ff6102cc84da1682a0ec0cc4c3eb5deb373</cites><orcidid>0000-0002-2135-695X ; 0000-0002-2933-857X ; 0000-0002-1946-6770 ; 0000000219466770 ; 000000022135695X ; 000000022933857X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,790,4498,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33380011$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Niyazi Çankaya, Mehmet</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><title>Fractional q-deformed chaotic maps: A weight function approach</title><title>Chaos (Woodbury, N.Y.)</title><addtitle>Chaos</addtitle><description>The fractional derivative holds long-time memory effects or non-locality. It successfully depicts the dynamical systems with long-range interactions. However, it becomes challenging to investigate chaos in the deformed fractional discrete-time systems. This study turns to fractional quantum calculus on the time scale and reports chaos in fractional q-deformed maps. The discrete memory kernels are used, and a weight function approach is proposed for fractional modeling. Rich q-deformed dynamics are demonstrated, which shows the methodology’s efficiency.</description><subject>Chaos theory</subject><subject>Deformation</subject><subject>Discrete time systems</subject><subject>Fractional calculus</subject><subject>Weighting functions</subject><issn>1054-1500</issn><issn>1089-7682</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90E9LwzAYBvAgitPpwS8gBS8qdL5p_jT1IIzhVBh40XNI09R1dEuXtIrf3tRNBUFPSeDH8755EDrBMMLAyRUbARDIUrKDDjCILE65SHb7O6MxZgADdOj9AgBwQtg-GhBCRHjgA3QzdUq3lV2pOlrHhSmtW5oi0nNl20pHS9X462gcvZnqZd5GZbf6xJFqGmeVnh-hvVLV3hxvzyF6nt4-Te7j2ePdw2Q8izURpI0VVYKQvCy4MCzTORMsyQRoSKigWVlyDInWghYKh80VGA1aU01MzgqTk5QM0fkmN4xdd8a3cll5beparYztvExoSmnG05QHevaLLmznwv96xVOeEZGKoC42SjvrvTOlbFy1VO5dYpB9qZLJbanBnm4TuzyU8y2_WgzgcgO8rlrVF_Rv2p_41bofKJuiJB8SUotx</recordid><startdate>202012</startdate><enddate>202012</enddate><creator>Wu, Guo-Cheng</creator><creator>Niyazi Çankaya, Mehmet</creator><creator>Banerjee, Santo</creator><general>American Institute of Physics</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-2933-857X</orcidid><orcidid>https://orcid.org/0000-0002-1946-6770</orcidid><orcidid>https://orcid.org/0000000219466770</orcidid><orcidid>https://orcid.org/000000022135695X</orcidid><orcidid>https://orcid.org/000000022933857X</orcidid></search><sort><creationdate>202012</creationdate><title>Fractional q-deformed chaotic maps: A weight function approach</title><author>Wu, Guo-Cheng ; Niyazi Çankaya, Mehmet ; Banerjee, Santo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-a4a833bfd68e59cb5852980c024849ff6102cc84da1682a0ec0cc4c3eb5deb373</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Chaos theory</topic><topic>Deformation</topic><topic>Discrete time systems</topic><topic>Fractional calculus</topic><topic>Weighting functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Guo-Cheng</creatorcontrib><creatorcontrib>Niyazi Çankaya, Mehmet</creatorcontrib><creatorcontrib>Banerjee, Santo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Chaos (Woodbury, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Guo-Cheng</au><au>Niyazi Çankaya, Mehmet</au><au>Banerjee, Santo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fractional q-deformed chaotic maps: A weight function approach</atitle><jtitle>Chaos (Woodbury, N.Y.)</jtitle><addtitle>Chaos</addtitle><date>2020-12</date><risdate>2020</risdate><volume>30</volume><issue>12</issue><spage>121106</spage><epage>121106</epage><pages>121106-121106</pages><issn>1054-1500</issn><eissn>1089-7682</eissn><coden>CHAOEH</coden><abstract>The fractional derivative holds long-time memory effects or non-locality. It successfully depicts the dynamical systems with long-range interactions. However, it becomes challenging to investigate chaos in the deformed fractional discrete-time systems. This study turns to fractional quantum calculus on the time scale and reports chaos in fractional q-deformed maps. The discrete memory kernels are used, and a weight function approach is proposed for fractional modeling. Rich q-deformed dynamics are demonstrated, which shows the methodology’s efficiency.</abstract><cop>United States</cop><pub>American Institute of Physics</pub><pmid>33380011</pmid><doi>10.1063/5.0030973</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-2135-695X</orcidid><orcidid>https://orcid.org/0000-0002-2933-857X</orcidid><orcidid>https://orcid.org/0000-0002-1946-6770</orcidid><orcidid>https://orcid.org/0000000219466770</orcidid><orcidid>https://orcid.org/000000022135695X</orcidid><orcidid>https://orcid.org/000000022933857X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1054-1500
ispartof Chaos (Woodbury, N.Y.), 2020-12, Vol.30 (12), p.121106-121106
issn 1054-1500
1089-7682
language eng
recordid cdi_crossref_primary_10_1063_5_0030973
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chaos theory
Deformation
Discrete time systems
Fractional calculus
Weighting functions
title Fractional q-deformed chaotic maps: A weight function approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A18%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fractional%20q-deformed%20chaotic%20maps:%20A%20weight%20function%20approach&rft.jtitle=Chaos%20(Woodbury,%20N.Y.)&rft.au=Wu,%20Guo-Cheng&rft.date=2020-12&rft.volume=30&rft.issue=12&rft.spage=121106&rft.epage=121106&rft.pages=121106-121106&rft.issn=1054-1500&rft.eissn=1089-7682&rft.coden=CHAOEH&rft_id=info:doi/10.1063/5.0030973&rft_dat=%3Cproquest_cross%3E2467693878%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2467693878&rft_id=info:pmid/33380011&rfr_iscdi=true