Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism
Second-harmonic (SH) microscopy is a widely used tool for the study of ferroelectric domains, domain walls, and their substructure. Yet, the contrast mechanism, particularly for the commonly used large numerical aperture, is not fully understood. In this work, we examine the contrast mechanism of SH...
Gespeichert in:
Veröffentlicht in: | Journal of applied physics 2020-12, Vol.128 (23) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 23 |
container_start_page | |
container_title | Journal of applied physics |
container_volume | 128 |
creator | Spychala, K. J. Mackwitz, P. Rüsing, M. Widhalm, A. Berth, G. Silberhorn, C. Zrenner, A. |
description | Second-harmonic (SH) microscopy is a widely used tool for the study of ferroelectric domains, domain walls, and their substructure. Yet, the contrast mechanism, particularly for the commonly used large numerical aperture, is not fully understood. In this work, we examine the contrast mechanism of SH microscopy in periodically poled LiNbO3 for the case of tightly focused laser beams and in the surface-near regime. The results are interpreted along theoretical calculations that include a vectorial field model for excitation and detection. Our model suggests that the characteristic contrasts mainly originate from interference patterns in the signal due to the sign change of the nonlinear susceptibility at the domain boundary. We find that for large numerical apertures, the tight focusing induces polarization components (axial and orthogonal to incident polarization), and the subsequent mixing of differently polarized light fields via off diagonal tensor elements plays an important role for the domain wall contrast. With our model-based analysis, this work represents the foundation for the investigation of the substructure of domain walls with second-harmonic microscopy. |
doi_str_mv | 10.1063/5.0025284 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0025284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2470105415</sourcerecordid><originalsourceid>FETCH-LOGICAL-c257t-f25f76b3f50858b29d52cb782f8e21c2493f724ca442fb7ca596b973c10986a33</originalsourceid><addsrcrecordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNR-bJvFWirZCaQ_qOWTTxKbsbtYkVfrv3dKCd08zDM8MwwvALUYjjMb0kY0QIoyI8gwMMBKy4IyhczDop7gQkstLcJXSFiGMBZUDEJehrX1rdYQuGF3DRnedbz9hcNDZGIOtrcnRG7gOjfYt_NF1nWDfLPyyWtEnOGl1vU8-HTbyxsK3-Qw23sSQTOj20IQ2R50ybKzZ6Nan5hpcOF0ne3OqQ_Dx8vw-nReL1ex1OlkUhjCeC0eY4-OKOoYEExWRa0ZMxQVxwhJsSCmp46Q0uiyJq7jRTI4ryanBSIqxpnQI7o53uxi-djZltQ272H-bFCk5woiVmPXq_qgOH6doneqib3TcK4zUIVLF1CnS3j4cbTI-6-xD-z_8HeIfVN3a0V8UgoR5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2470105415</pqid></control><display><type>article</type><title>Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Spychala, K. J. ; Mackwitz, P. ; Rüsing, M. ; Widhalm, A. ; Berth, G. ; Silberhorn, C. ; Zrenner, A.</creator><creatorcontrib>Spychala, K. J. ; Mackwitz, P. ; Rüsing, M. ; Widhalm, A. ; Berth, G. ; Silberhorn, C. ; Zrenner, A.</creatorcontrib><description>Second-harmonic (SH) microscopy is a widely used tool for the study of ferroelectric domains, domain walls, and their substructure. Yet, the contrast mechanism, particularly for the commonly used large numerical aperture, is not fully understood. In this work, we examine the contrast mechanism of SH microscopy in periodically poled LiNbO3 for the case of tightly focused laser beams and in the surface-near regime. The results are interpreted along theoretical calculations that include a vectorial field model for excitation and detection. Our model suggests that the characteristic contrasts mainly originate from interference patterns in the signal due to the sign change of the nonlinear susceptibility at the domain boundary. We find that for large numerical apertures, the tight focusing induces polarization components (axial and orthogonal to incident polarization), and the subsequent mixing of differently polarized light fields via off diagonal tensor elements plays an important role for the domain wall contrast. With our model-based analysis, this work represents the foundation for the investigation of the substructure of domain walls with second-harmonic microscopy.</description><identifier>ISSN: 0021-8979</identifier><identifier>EISSN: 1089-7550</identifier><identifier>DOI: 10.1063/5.0025284</identifier><identifier>CODEN: JAPIAU</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Applied physics ; Domain walls ; Ferroelectric domains ; Ferroelectric materials ; Ferroelectricity ; Laser beams ; Lithium niobates ; Mathematical models ; Microscopy ; Numerical aperture ; Polarization ; Polarized light ; Substructures ; Tensors</subject><ispartof>Journal of applied physics, 2020-12, Vol.128 (23)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c257t-f25f76b3f50858b29d52cb782f8e21c2493f724ca442fb7ca596b973c10986a33</citedby><cites>FETCH-LOGICAL-c257t-f25f76b3f50858b29d52cb782f8e21c2493f724ca442fb7ca596b973c10986a33</cites><orcidid>0000-0001-6092-3470 ; 0000-0002-4837-1121 ; 0000-0001-9884-3257 ; 0000-0003-4682-4577 ; 0000-0002-2349-5443</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jap/article-lookup/doi/10.1063/5.0025284$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Spychala, K. J.</creatorcontrib><creatorcontrib>Mackwitz, P.</creatorcontrib><creatorcontrib>Rüsing, M.</creatorcontrib><creatorcontrib>Widhalm, A.</creatorcontrib><creatorcontrib>Berth, G.</creatorcontrib><creatorcontrib>Silberhorn, C.</creatorcontrib><creatorcontrib>Zrenner, A.</creatorcontrib><title>Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism</title><title>Journal of applied physics</title><description>Second-harmonic (SH) microscopy is a widely used tool for the study of ferroelectric domains, domain walls, and their substructure. Yet, the contrast mechanism, particularly for the commonly used large numerical aperture, is not fully understood. In this work, we examine the contrast mechanism of SH microscopy in periodically poled LiNbO3 for the case of tightly focused laser beams and in the surface-near regime. The results are interpreted along theoretical calculations that include a vectorial field model for excitation and detection. Our model suggests that the characteristic contrasts mainly originate from interference patterns in the signal due to the sign change of the nonlinear susceptibility at the domain boundary. We find that for large numerical apertures, the tight focusing induces polarization components (axial and orthogonal to incident polarization), and the subsequent mixing of differently polarized light fields via off diagonal tensor elements plays an important role for the domain wall contrast. With our model-based analysis, this work represents the foundation for the investigation of the substructure of domain walls with second-harmonic microscopy.</description><subject>Applied physics</subject><subject>Domain walls</subject><subject>Ferroelectric domains</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Laser beams</subject><subject>Lithium niobates</subject><subject>Mathematical models</subject><subject>Microscopy</subject><subject>Numerical aperture</subject><subject>Polarization</subject><subject>Polarized light</subject><subject>Substructures</subject><subject>Tensors</subject><issn>0021-8979</issn><issn>1089-7550</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqd0E1LAzEQBuAgCtbqwX8Q8KSwNR-bJvFWirZCaQ_qOWTTxKbsbtYkVfrv3dKCd08zDM8MwwvALUYjjMb0kY0QIoyI8gwMMBKy4IyhczDop7gQkstLcJXSFiGMBZUDEJehrX1rdYQuGF3DRnedbz9hcNDZGIOtrcnRG7gOjfYt_NF1nWDfLPyyWtEnOGl1vU8-HTbyxsK3-Qw23sSQTOj20IQ2R50ybKzZ6Nan5hpcOF0ne3OqQ_Dx8vw-nReL1ex1OlkUhjCeC0eY4-OKOoYEExWRa0ZMxQVxwhJsSCmp46Q0uiyJq7jRTI4ryanBSIqxpnQI7o53uxi-djZltQ272H-bFCk5woiVmPXq_qgOH6doneqib3TcK4zUIVLF1CnS3j4cbTI-6-xD-z_8HeIfVN3a0V8UgoR5</recordid><startdate>20201221</startdate><enddate>20201221</enddate><creator>Spychala, K. J.</creator><creator>Mackwitz, P.</creator><creator>Rüsing, M.</creator><creator>Widhalm, A.</creator><creator>Berth, G.</creator><creator>Silberhorn, C.</creator><creator>Zrenner, A.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6092-3470</orcidid><orcidid>https://orcid.org/0000-0002-4837-1121</orcidid><orcidid>https://orcid.org/0000-0001-9884-3257</orcidid><orcidid>https://orcid.org/0000-0003-4682-4577</orcidid><orcidid>https://orcid.org/0000-0002-2349-5443</orcidid></search><sort><creationdate>20201221</creationdate><title>Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism</title><author>Spychala, K. J. ; Mackwitz, P. ; Rüsing, M. ; Widhalm, A. ; Berth, G. ; Silberhorn, C. ; Zrenner, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c257t-f25f76b3f50858b29d52cb782f8e21c2493f724ca442fb7ca596b973c10986a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Applied physics</topic><topic>Domain walls</topic><topic>Ferroelectric domains</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Laser beams</topic><topic>Lithium niobates</topic><topic>Mathematical models</topic><topic>Microscopy</topic><topic>Numerical aperture</topic><topic>Polarization</topic><topic>Polarized light</topic><topic>Substructures</topic><topic>Tensors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spychala, K. J.</creatorcontrib><creatorcontrib>Mackwitz, P.</creatorcontrib><creatorcontrib>Rüsing, M.</creatorcontrib><creatorcontrib>Widhalm, A.</creatorcontrib><creatorcontrib>Berth, G.</creatorcontrib><creatorcontrib>Silberhorn, C.</creatorcontrib><creatorcontrib>Zrenner, A.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of applied physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spychala, K. J.</au><au>Mackwitz, P.</au><au>Rüsing, M.</au><au>Widhalm, A.</au><au>Berth, G.</au><au>Silberhorn, C.</au><au>Zrenner, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism</atitle><jtitle>Journal of applied physics</jtitle><date>2020-12-21</date><risdate>2020</risdate><volume>128</volume><issue>23</issue><issn>0021-8979</issn><eissn>1089-7550</eissn><coden>JAPIAU</coden><abstract>Second-harmonic (SH) microscopy is a widely used tool for the study of ferroelectric domains, domain walls, and their substructure. Yet, the contrast mechanism, particularly for the commonly used large numerical aperture, is not fully understood. In this work, we examine the contrast mechanism of SH microscopy in periodically poled LiNbO3 for the case of tightly focused laser beams and in the surface-near regime. The results are interpreted along theoretical calculations that include a vectorial field model for excitation and detection. Our model suggests that the characteristic contrasts mainly originate from interference patterns in the signal due to the sign change of the nonlinear susceptibility at the domain boundary. We find that for large numerical apertures, the tight focusing induces polarization components (axial and orthogonal to incident polarization), and the subsequent mixing of differently polarized light fields via off diagonal tensor elements plays an important role for the domain wall contrast. With our model-based analysis, this work represents the foundation for the investigation of the substructure of domain walls with second-harmonic microscopy.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0025284</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6092-3470</orcidid><orcidid>https://orcid.org/0000-0002-4837-1121</orcidid><orcidid>https://orcid.org/0000-0001-9884-3257</orcidid><orcidid>https://orcid.org/0000-0003-4682-4577</orcidid><orcidid>https://orcid.org/0000-0002-2349-5443</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8979 |
ispartof | Journal of applied physics, 2020-12, Vol.128 (23) |
issn | 0021-8979 1089-7550 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0025284 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Applied physics Domain walls Ferroelectric domains Ferroelectric materials Ferroelectricity Laser beams Lithium niobates Mathematical models Microscopy Numerical aperture Polarization Polarized light Substructures Tensors |
title | Nonlinear focal mapping of ferroelectric domain walls in LiNbO3: Analysis of the SHG microscopy contrast mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T21%3A35%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20focal%20mapping%20of%20ferroelectric%20domain%20walls%20in%20LiNbO3:%20Analysis%20of%20the%20SHG%20microscopy%20contrast%20mechanism&rft.jtitle=Journal%20of%20applied%20physics&rft.au=Spychala,%20K.%20J.&rft.date=2020-12-21&rft.volume=128&rft.issue=23&rft.issn=0021-8979&rft.eissn=1089-7550&rft.coden=JAPIAU&rft_id=info:doi/10.1063/5.0025284&rft_dat=%3Cproquest_cross%3E2470105415%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2470105415&rft_id=info:pmid/&rfr_iscdi=true |