Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment

The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of renewable and sustainable energy 2020-11, Vol.12 (6)
Hauptverfasser: Howland, Michael F., González, Carlos Moral, Martínez, Juan José Pena, Quesada, Jesús Bas, Larrañaga, Felipe Palou, Yadav, Neeraj K., Chawla, Jasvipul S., Dabiri, John O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of renewable and sustainable energy
container_volume 12
creator Howland, Michael F.
González, Carlos Moral
Martínez, Juan José Pena
Quesada, Jesús Bas
Larrañaga, Felipe Palou
Yadav, Neeraj K.
Chawla, Jasvipul S.
Dabiri, John O.
description The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements, which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. The proposed model can be used for the modeling of the angular velocity, aerodynamic torque, and power production of an arbitrary yaw misaligned wind turbine based on the incident velocity profile, wind turbine aerodynamic properties, and turbine control system. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system.
doi_str_mv 10.1063/5.0023746
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0023746</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2471565087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-aa90931b7fccc7301b5f5a1db6e1137a5ed080b42bfb8999370ecdca401062e63</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LqJNnsdo9S_FMoeNFzyGYTm7JN1iRr6bd3lxYVBE8zML958-YhdEnglkDB7vgtAGVlXhyhCalykpVA6PGv_hSdxbgGKChwOkFu4Uzba6c09gbLtPGxW-lgFVbeNTZZ7yL2DqeVxp3f6oC74JtejYNxo0-2tWmXRSVbjbfWNTj1obZOR2wd3skt3tgoW_vuNtqlc3RiZBv1xaFO0dvjw-v8OVu-PC3m98tMsYKmTMoKKkbq0iilSgak5oZL0tSFJoSVkusGZlDntDb1rKoqVoJWjZI5DCFQXbAputrrDm4_eh2TWPs-uOGkoHlJeMFhVg7U9Z5SwccYtBFdsBsZdoKAGOMUXBziHNibPRuVTXJ8_xv-9OEHFF1j_oP_Kn8BYhSFQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2471565087</pqid></control><display><type>article</type><title>Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment</title><source>AIP Journals Complete</source><creator>Howland, Michael F. ; González, Carlos Moral ; Martínez, Juan José Pena ; Quesada, Jesús Bas ; Larrañaga, Felipe Palou ; Yadav, Neeraj K. ; Chawla, Jasvipul S. ; Dabiri, John O.</creator><creatorcontrib>Howland, Michael F. ; González, Carlos Moral ; Martínez, Juan José Pena ; Quesada, Jesús Bas ; Larrañaga, Felipe Palou ; Yadav, Neeraj K. ; Chawla, Jasvipul S. ; Dabiri, John O.</creatorcontrib><description>The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements, which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. The proposed model can be used for the modeling of the angular velocity, aerodynamic torque, and power production of an arbitrary yaw misaligned wind turbine based on the incident velocity profile, wind turbine aerodynamic properties, and turbine control system. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system.</description><identifier>ISSN: 1941-7012</identifier><identifier>EISSN: 1941-7012</identifier><identifier>DOI: 10.1063/5.0023746</identifier><identifier>CODEN: JRSEBH</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Aerodynamics ; Angular velocity ; Atmospheric boundary layer ; Atmospheric models ; Control systems ; Diurnal variations ; Misalignment ; Optimal control ; Optimization ; Rotors ; Steering ; Turbines ; Velocity ; Velocity distribution ; Wind effects ; Wind farms ; Wind power ; Wind power generation ; Wind speed ; Wind turbines ; Yaw</subject><ispartof>Journal of renewable and sustainable energy, 2020-11, Vol.12 (6)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-aa90931b7fccc7301b5f5a1db6e1137a5ed080b42bfb8999370ecdca401062e63</citedby><cites>FETCH-LOGICAL-c362t-aa90931b7fccc7301b5f5a1db6e1137a5ed080b42bfb8999370ecdca401062e63</cites><orcidid>0000-0002-9129-7975 ; 0000-0002-2878-3874 ; 0000-0002-1806-119X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jrse/article-lookup/doi/10.1063/5.0023746$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76126</link.rule.ids></links><search><creatorcontrib>Howland, Michael F.</creatorcontrib><creatorcontrib>González, Carlos Moral</creatorcontrib><creatorcontrib>Martínez, Juan José Pena</creatorcontrib><creatorcontrib>Quesada, Jesús Bas</creatorcontrib><creatorcontrib>Larrañaga, Felipe Palou</creatorcontrib><creatorcontrib>Yadav, Neeraj K.</creatorcontrib><creatorcontrib>Chawla, Jasvipul S.</creatorcontrib><creatorcontrib>Dabiri, John O.</creatorcontrib><title>Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment</title><title>Journal of renewable and sustainable energy</title><description>The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements, which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. The proposed model can be used for the modeling of the angular velocity, aerodynamic torque, and power production of an arbitrary yaw misaligned wind turbine based on the incident velocity profile, wind turbine aerodynamic properties, and turbine control system. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system.</description><subject>Aerodynamics</subject><subject>Angular velocity</subject><subject>Atmospheric boundary layer</subject><subject>Atmospheric models</subject><subject>Control systems</subject><subject>Diurnal variations</subject><subject>Misalignment</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Rotors</subject><subject>Steering</subject><subject>Turbines</subject><subject>Velocity</subject><subject>Velocity distribution</subject><subject>Wind effects</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><subject>Wind speed</subject><subject>Wind turbines</subject><subject>Yaw</subject><issn>1941-7012</issn><issn>1941-7012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKsHv0HAk8LqJNnsdo9S_FMoeNFzyGYTm7JN1iRr6bd3lxYVBE8zML958-YhdEnglkDB7vgtAGVlXhyhCalykpVA6PGv_hSdxbgGKChwOkFu4Uzba6c09gbLtPGxW-lgFVbeNTZZ7yL2DqeVxp3f6oC74JtejYNxo0-2tWmXRSVbjbfWNTj1obZOR2wd3skt3tgoW_vuNtqlc3RiZBv1xaFO0dvjw-v8OVu-PC3m98tMsYKmTMoKKkbq0iilSgak5oZL0tSFJoSVkusGZlDntDb1rKoqVoJWjZI5DCFQXbAputrrDm4_eh2TWPs-uOGkoHlJeMFhVg7U9Z5SwccYtBFdsBsZdoKAGOMUXBziHNibPRuVTXJ8_xv-9OEHFF1j_oP_Kn8BYhSFQA</recordid><startdate>202011</startdate><enddate>202011</enddate><creator>Howland, Michael F.</creator><creator>González, Carlos Moral</creator><creator>Martínez, Juan José Pena</creator><creator>Quesada, Jesús Bas</creator><creator>Larrañaga, Felipe Palou</creator><creator>Yadav, Neeraj K.</creator><creator>Chawla, Jasvipul S.</creator><creator>Dabiri, John O.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-9129-7975</orcidid><orcidid>https://orcid.org/0000-0002-2878-3874</orcidid><orcidid>https://orcid.org/0000-0002-1806-119X</orcidid></search><sort><creationdate>202011</creationdate><title>Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment</title><author>Howland, Michael F. ; González, Carlos Moral ; Martínez, Juan José Pena ; Quesada, Jesús Bas ; Larrañaga, Felipe Palou ; Yadav, Neeraj K. ; Chawla, Jasvipul S. ; Dabiri, John O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-aa90931b7fccc7301b5f5a1db6e1137a5ed080b42bfb8999370ecdca401062e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Aerodynamics</topic><topic>Angular velocity</topic><topic>Atmospheric boundary layer</topic><topic>Atmospheric models</topic><topic>Control systems</topic><topic>Diurnal variations</topic><topic>Misalignment</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Rotors</topic><topic>Steering</topic><topic>Turbines</topic><topic>Velocity</topic><topic>Velocity distribution</topic><topic>Wind effects</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><topic>Wind speed</topic><topic>Wind turbines</topic><topic>Yaw</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Howland, Michael F.</creatorcontrib><creatorcontrib>González, Carlos Moral</creatorcontrib><creatorcontrib>Martínez, Juan José Pena</creatorcontrib><creatorcontrib>Quesada, Jesús Bas</creatorcontrib><creatorcontrib>Larrañaga, Felipe Palou</creatorcontrib><creatorcontrib>Yadav, Neeraj K.</creatorcontrib><creatorcontrib>Chawla, Jasvipul S.</creatorcontrib><creatorcontrib>Dabiri, John O.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of renewable and sustainable energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Howland, Michael F.</au><au>González, Carlos Moral</au><au>Martínez, Juan José Pena</au><au>Quesada, Jesús Bas</au><au>Larrañaga, Felipe Palou</au><au>Yadav, Neeraj K.</au><au>Chawla, Jasvipul S.</au><au>Dabiri, John O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment</atitle><jtitle>Journal of renewable and sustainable energy</jtitle><date>2020-11</date><risdate>2020</risdate><volume>12</volume><issue>6</issue><issn>1941-7012</issn><eissn>1941-7012</eissn><coden>JRSEBH</coden><abstract>The intentional yaw misalignment of leading, upwind turbines in a wind farm, termed wake steering, has demonstrated potential as a collective control approach for wind farm power maximization. The optimal control strategy and the resulting effect of wake steering on wind farm power production are in part dictated by the power degradation of the upwind yaw misaligned wind turbines. In the atmospheric boundary layer, the wind speed and direction may vary significantly over the wind turbine rotor area, depending on atmospheric conditions and stability, resulting in freestream turbine power production which is asymmetric as a function of the direction of yaw misalignment and which varies during the diurnal cycle. In this study, we propose a model for the power production of a wind turbine in yaw misalignment based on aerodynamic blade elements, which incorporates the effects of wind speed and direction changes over the turbine rotor area in yaw misalignment. The proposed model can be used for the modeling of the angular velocity, aerodynamic torque, and power production of an arbitrary yaw misaligned wind turbine based on the incident velocity profile, wind turbine aerodynamic properties, and turbine control system. A field experiment is performed using multiple utility-scale wind turbines to characterize the power production of yawed freestream operating turbines depending on the wind conditions, and the model is validated using the experimental data. The resulting power production of a yaw misaligned variable speed wind turbine depends on a nonlinear interaction between the yaw misalignment, the atmospheric conditions, and the wind turbine control system.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023746</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9129-7975</orcidid><orcidid>https://orcid.org/0000-0002-2878-3874</orcidid><orcidid>https://orcid.org/0000-0002-1806-119X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1941-7012
ispartof Journal of renewable and sustainable energy, 2020-11, Vol.12 (6)
issn 1941-7012
1941-7012
language eng
recordid cdi_crossref_primary_10_1063_5_0023746
source AIP Journals Complete
subjects Aerodynamics
Angular velocity
Atmospheric boundary layer
Atmospheric models
Control systems
Diurnal variations
Misalignment
Optimal control
Optimization
Rotors
Steering
Turbines
Velocity
Velocity distribution
Wind effects
Wind farms
Wind power
Wind power generation
Wind speed
Wind turbines
Yaw
title Influence of atmospheric conditions on the power production of utility-scale wind turbines in yaw misalignment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A53%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20atmospheric%20conditions%20on%20the%20power%20production%20of%20utility-scale%20wind%20turbines%20in%20yaw%20misalignment&rft.jtitle=Journal%20of%20renewable%20and%20sustainable%20energy&rft.au=Howland,%20Michael%20F.&rft.date=2020-11&rft.volume=12&rft.issue=6&rft.issn=1941-7012&rft.eissn=1941-7012&rft.coden=JRSEBH&rft_id=info:doi/10.1063/5.0023746&rft_dat=%3Cproquest_cross%3E2471565087%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2471565087&rft_id=info:pmid/&rfr_iscdi=true