Asymptotic theory for the detection of mixing in anomalous diffusion

In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2021-06, Vol.62 (6)
Hauptverfasser: Zhang, Kui, Didier, Gustavo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Journal of mathematical physics
container_volume 62
creator Zhang, Kui
Didier, Gustavo
description In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.
doi_str_mv 10.1063/5.0023227
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0023227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535581170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwdTLZbHaPpT6h4EXPYZuHpnQ3NcmK_fZuacG7pxmGHzPMn5ArBlMGFb8TUwDkiPKITBjUTSErUR-TyTjFAsu6PiVnKa0AGKvLckLuZ2nbbXLIXtP8aUPcUhfirqXGZquzDz0Njnb-x_cf1Pe07UPXrsOQqPHODWkEF-TEtetkLw_1nLw_PrzNn4vF69PLfLYoNNYyFxUsl9YIWxvOTOOM5ShQg-EWG-MsSMk1YqlNqxEEOFOhbVqJ2GgrAQQ_J9f7vZsYvgabslqFIfbjSYWCC1EzJmFUN3ulY0gpWqc20Xdt3CoGaheSEuoQ0mhv9zZpn9vds__D3yH-QbUxjv8Cqh51Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535581170</pqid></control><display><type>article</type><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Kui ; Didier, Gustavo</creator><creatorcontrib>Zhang, Kui ; Didier, Gustavo</creatorcontrib><description>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0023227</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic methods ; Asymptotic properties ; Gaussian process ; Hypothesis testing ; Physics ; Random noise ; Stochastic processes</subject><ispartof>Journal of mathematical physics, 2021-06, Vol.62 (6)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</cites><orcidid>0000-0003-1363-5868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0023227$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Didier, Gustavo</creatorcontrib><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><title>Journal of mathematical physics</title><description>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Gaussian process</subject><subject>Hypothesis testing</subject><subject>Physics</subject><subject>Random noise</subject><subject>Stochastic processes</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwdTLZbHaPpT6h4EXPYZuHpnQ3NcmK_fZuacG7pxmGHzPMn5ArBlMGFb8TUwDkiPKITBjUTSErUR-TyTjFAsu6PiVnKa0AGKvLckLuZ2nbbXLIXtP8aUPcUhfirqXGZquzDz0Njnb-x_cf1Pe07UPXrsOQqPHODWkEF-TEtetkLw_1nLw_PrzNn4vF69PLfLYoNNYyFxUsl9YIWxvOTOOM5ShQg-EWG-MsSMk1YqlNqxEEOFOhbVqJ2GgrAQQ_J9f7vZsYvgabslqFIfbjSYWCC1EzJmFUN3ulY0gpWqc20Xdt3CoGaheSEuoQ0mhv9zZpn9vds__D3yH-QbUxjv8Cqh51Rg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kui</creator><creator>Didier, Gustavo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1363-5868</orcidid></search><sort><creationdate>20210601</creationdate><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><author>Zhang, Kui ; Didier, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Gaussian process</topic><topic>Hypothesis testing</topic><topic>Physics</topic><topic>Random noise</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Didier, Gustavo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kui</au><au>Didier, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic theory for the detection of mixing in anomalous diffusion</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>62</volume><issue>6</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023227</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1363-5868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2021-06, Vol.62 (6)
issn 0022-2488
1089-7658
language eng
recordid cdi_crossref_primary_10_1063_5_0023227
source AIP Journals Complete; Alma/SFX Local Collection
subjects Asymptotic methods
Asymptotic properties
Gaussian process
Hypothesis testing
Physics
Random noise
Stochastic processes
title Asymptotic theory for the detection of mixing in anomalous diffusion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20theory%20for%20the%20detection%20of%20mixing%20in%20anomalous%20diffusion&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Zhang,%20Kui&rft.date=2021-06-01&rft.volume=62&rft.issue=6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0023227&rft_dat=%3Cproquest_cross%3E2535581170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535581170&rft_id=info:pmid/&rfr_iscdi=true