Asymptotic theory for the detection of mixing in anomalous diffusion
In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process....
Gespeichert in:
Veröffentlicht in: | Journal of mathematical physics 2021-06, Vol.62 (6) |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Journal of mathematical physics |
container_volume | 62 |
creator | Zhang, Kui Didier, Gustavo |
description | In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing. |
doi_str_mv | 10.1063/5.0023227 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0023227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535581170</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</originalsourceid><addsrcrecordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwdTLZbHaPpT6h4EXPYZuHpnQ3NcmK_fZuacG7pxmGHzPMn5ArBlMGFb8TUwDkiPKITBjUTSErUR-TyTjFAsu6PiVnKa0AGKvLckLuZ2nbbXLIXtP8aUPcUhfirqXGZquzDz0Njnb-x_cf1Pe07UPXrsOQqPHODWkEF-TEtetkLw_1nLw_PrzNn4vF69PLfLYoNNYyFxUsl9YIWxvOTOOM5ShQg-EWG-MsSMk1YqlNqxEEOFOhbVqJ2GgrAQQ_J9f7vZsYvgabslqFIfbjSYWCC1EzJmFUN3ulY0gpWqc20Xdt3CoGaheSEuoQ0mhv9zZpn9vds__D3yH-QbUxjv8Cqh51Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535581170</pqid></control><display><type>article</type><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Zhang, Kui ; Didier, Gustavo</creator><creatorcontrib>Zhang, Kui ; Didier, Gustavo</creatorcontrib><description>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0023227</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Asymptotic methods ; Asymptotic properties ; Gaussian process ; Hypothesis testing ; Physics ; Random noise ; Stochastic processes</subject><ispartof>Journal of mathematical physics, 2021-06, Vol.62 (6)</ispartof><rights>Author(s)</rights><rights>2021 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</cites><orcidid>0000-0003-1363-5868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0023227$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76127</link.rule.ids></links><search><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Didier, Gustavo</creatorcontrib><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><title>Journal of mathematical physics</title><description>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</description><subject>Asymptotic methods</subject><subject>Asymptotic properties</subject><subject>Gaussian process</subject><subject>Hypothesis testing</subject><subject>Physics</subject><subject>Random noise</subject><subject>Stochastic processes</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNqd0EtLAzEQB_AgCtbHwW8Q8KSwdTLZbHaPpT6h4EXPYZuHpnQ3NcmK_fZuacG7pxmGHzPMn5ArBlMGFb8TUwDkiPKITBjUTSErUR-TyTjFAsu6PiVnKa0AGKvLckLuZ2nbbXLIXtP8aUPcUhfirqXGZquzDz0Njnb-x_cf1Pe07UPXrsOQqPHODWkEF-TEtetkLw_1nLw_PrzNn4vF69PLfLYoNNYyFxUsl9YIWxvOTOOM5ShQg-EWG-MsSMk1YqlNqxEEOFOhbVqJ2GgrAQQ_J9f7vZsYvgabslqFIfbjSYWCC1EzJmFUN3ulY0gpWqc20Xdt3CoGaheSEuoQ0mhv9zZpn9vds__D3yH-QbUxjv8Cqh51Rg</recordid><startdate>20210601</startdate><enddate>20210601</enddate><creator>Zhang, Kui</creator><creator>Didier, Gustavo</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1363-5868</orcidid></search><sort><creationdate>20210601</creationdate><title>Asymptotic theory for the detection of mixing in anomalous diffusion</title><author>Zhang, Kui ; Didier, Gustavo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-60bbed5e8d31d9fde3252c0d3e29dfe0773c224cdac2050fd62e9a7229ce70053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic properties</topic><topic>Gaussian process</topic><topic>Hypothesis testing</topic><topic>Physics</topic><topic>Random noise</topic><topic>Stochastic processes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Kui</creatorcontrib><creatorcontrib>Didier, Gustavo</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Kui</au><au>Didier, Gustavo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Asymptotic theory for the detection of mixing in anomalous diffusion</atitle><jtitle>Journal of mathematical physics</jtitle><date>2021-06-01</date><risdate>2021</risdate><volume>62</volume><issue>6</issue><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>In this paper, we develop asymptotic theory for the mixing detection methodology proposed by Magdziarz and Weron [Phys. Rev. E 84, 051138 (2011)]. The assumptions cover a broad family of Gaussian stochastic processes, including fractional Gaussian noise and the fractional Ornstein–Uhlenbeck process. We show that the asymptotic distribution and convergence rates of the detection statistic may be, respectively, Gaussian or non-Gaussian and standard or nonstandard depending on the diffusion exponent. The results pave the way for mixing detection based on a single observed sample path and by means of robust hypothesis testing.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0023227</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0003-1363-5868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2488 |
ispartof | Journal of mathematical physics, 2021-06, Vol.62 (6) |
issn | 0022-2488 1089-7658 |
language | eng |
recordid | cdi_crossref_primary_10_1063_5_0023227 |
source | AIP Journals Complete; Alma/SFX Local Collection |
subjects | Asymptotic methods Asymptotic properties Gaussian process Hypothesis testing Physics Random noise Stochastic processes |
title | Asymptotic theory for the detection of mixing in anomalous diffusion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T01%3A40%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Asymptotic%20theory%20for%20the%20detection%20of%20mixing%20in%20anomalous%20diffusion&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Zhang,%20Kui&rft.date=2021-06-01&rft.volume=62&rft.issue=6&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0023227&rft_dat=%3Cproquest_cross%3E2535581170%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535581170&rft_id=info:pmid/&rfr_iscdi=true |