New power-law scaling for friction factor of extreme Reynolds number pipe flows

We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = Ce/Re2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physics of fluids (1994) 2020-09, Vol.32 (9)
Hauptverfasser: Anbarlooei, H. R., Cruz, D. O. A., Ramos, F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page
container_title Physics of fluids (1994)
container_volume 32
creator Anbarlooei, H. R.
Cruz, D. O. A.
Ramos, F.
description We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = Ce/Re2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric mean δδν, where δν is the viscous length scale and δ is the pipe radius. Comparisons with the experimental data from the Princeton Superpipe and the Hi-Reff Facility at the National Metrology Institute of Japan show excellent agreement for a large range of Reynolds numbers. This work, along with the recent empirical evidence, suggests a possible change in the mechanism of turbulent momentum transfer for pipe flows in extreme Reynolds numbers.
doi_str_mv 10.1063/5.0020665
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_1063_5_0020665</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2444999692</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-95fa65e698232bd9122e82a449fbfe8caee99e7857af302bcfcef56bba1769413</originalsourceid><addsrcrecordid>eNp9kFFLwzAUhYMoOKcP_oOATwqdSdrcNo8ynArDgehzSLMb6WibmnTU_Xs7umef7rnwcQ7nEHLL2YIzSB_lgjHBAOQZmXFWqCQHgPOjzlkCkPJLchXjjjGWKgEzsnnHgXZ-wJDUZqDRmrpqv6nzgbpQ2b7yLXXG9uPvHcXfPmCD9AMPra-3kbb7psRAu6pD6mo_xGty4Uwd8eZ05-Rr9fy5fE3Wm5e35dM6sUKJPlHSGZAIqhCpKLeKC4GFMFmmXOmwsAZRKcwLmRuXMlFaZ9FJKEvDc1AZT-fkbvLtgv_ZY-z1zu9DO0ZqkY02SoESI3U_UTb4GAM63YWqMeGgOdPHvbTUp71G9mFio616cyz-D_wHTw1qeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2444999692</pqid></control><display><type>article</type><title>New power-law scaling for friction factor of extreme Reynolds number pipe flows</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Anbarlooei, H. R. ; Cruz, D. O. A. ; Ramos, F.</creator><creatorcontrib>Anbarlooei, H. R. ; Cruz, D. O. A. ; Ramos, F.</creatorcontrib><description>We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = Ce/Re2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric mean δδν, where δν is the viscous length scale and δ is the pipe radius. Comparisons with the experimental data from the Princeton Superpipe and the Hi-Reff Facility at the National Metrology Institute of Japan show excellent agreement for a large range of Reynolds numbers. This work, along with the recent empirical evidence, suggests a possible change in the mechanism of turbulent momentum transfer for pipe flows in extreme Reynolds numbers.</description><identifier>ISSN: 1070-6631</identifier><identifier>EISSN: 1089-7666</identifier><identifier>DOI: 10.1063/5.0020665</identifier><identifier>CODEN: PHFLE6</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Computational fluid dynamics ; Extreme values ; Fluid dynamics ; Fluid flow ; Friction factor ; Incompressible flow ; Momentum transfer ; Newtonian fluids ; Phenomenology ; Physics ; Pipe flow ; Power law ; Reynolds number</subject><ispartof>Physics of fluids (1994), 2020-09, Vol.32 (9)</ispartof><rights>Author(s)</rights><rights>2020 Author(s). Published under license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-95fa65e698232bd9122e82a449fbfe8caee99e7857af302bcfcef56bba1769413</citedby><cites>FETCH-LOGICAL-c292t-95fa65e698232bd9122e82a449fbfe8caee99e7857af302bcfcef56bba1769413</cites><orcidid>0000-0002-6094-7613</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,791,4498,27905,27906</link.rule.ids></links><search><creatorcontrib>Anbarlooei, H. R.</creatorcontrib><creatorcontrib>Cruz, D. O. A.</creatorcontrib><creatorcontrib>Ramos, F.</creatorcontrib><title>New power-law scaling for friction factor of extreme Reynolds number pipe flows</title><title>Physics of fluids (1994)</title><description>We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = Ce/Re2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric mean δδν, where δν is the viscous length scale and δ is the pipe radius. Comparisons with the experimental data from the Princeton Superpipe and the Hi-Reff Facility at the National Metrology Institute of Japan show excellent agreement for a large range of Reynolds numbers. This work, along with the recent empirical evidence, suggests a possible change in the mechanism of turbulent momentum transfer for pipe flows in extreme Reynolds numbers.</description><subject>Computational fluid dynamics</subject><subject>Extreme values</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Friction factor</subject><subject>Incompressible flow</subject><subject>Momentum transfer</subject><subject>Newtonian fluids</subject><subject>Phenomenology</subject><subject>Physics</subject><subject>Pipe flow</subject><subject>Power law</subject><subject>Reynolds number</subject><issn>1070-6631</issn><issn>1089-7666</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kFFLwzAUhYMoOKcP_oOATwqdSdrcNo8ynArDgehzSLMb6WibmnTU_Xs7umef7rnwcQ7nEHLL2YIzSB_lgjHBAOQZmXFWqCQHgPOjzlkCkPJLchXjjjGWKgEzsnnHgXZ-wJDUZqDRmrpqv6nzgbpQ2b7yLXXG9uPvHcXfPmCD9AMPra-3kbb7psRAu6pD6mo_xGty4Uwd8eZ05-Rr9fy5fE3Wm5e35dM6sUKJPlHSGZAIqhCpKLeKC4GFMFmmXOmwsAZRKcwLmRuXMlFaZ9FJKEvDc1AZT-fkbvLtgv_ZY-z1zu9DO0ZqkY02SoESI3U_UTb4GAM63YWqMeGgOdPHvbTUp71G9mFio616cyz-D_wHTw1qeA</recordid><startdate>20200901</startdate><enddate>20200901</enddate><creator>Anbarlooei, H. R.</creator><creator>Cruz, D. O. A.</creator><creator>Ramos, F.</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6094-7613</orcidid></search><sort><creationdate>20200901</creationdate><title>New power-law scaling for friction factor of extreme Reynolds number pipe flows</title><author>Anbarlooei, H. R. ; Cruz, D. O. A. ; Ramos, F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-95fa65e698232bd9122e82a449fbfe8caee99e7857af302bcfcef56bba1769413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Computational fluid dynamics</topic><topic>Extreme values</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Friction factor</topic><topic>Incompressible flow</topic><topic>Momentum transfer</topic><topic>Newtonian fluids</topic><topic>Phenomenology</topic><topic>Physics</topic><topic>Pipe flow</topic><topic>Power law</topic><topic>Reynolds number</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anbarlooei, H. R.</creatorcontrib><creatorcontrib>Cruz, D. O. A.</creatorcontrib><creatorcontrib>Ramos, F.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physics of fluids (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anbarlooei, H. R.</au><au>Cruz, D. O. A.</au><au>Ramos, F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New power-law scaling for friction factor of extreme Reynolds number pipe flows</atitle><jtitle>Physics of fluids (1994)</jtitle><date>2020-09-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><issn>1070-6631</issn><eissn>1089-7666</eissn><coden>PHFLE6</coden><abstract>We report a novel power-law scaling for the friction factor of incompressible Newtonian fluid flows at extreme Reynolds numbers: f = Ce/Re2/13. The formula is based on a new phenomenology for coherent structures that dominate the momentum exchange in meso-layer regions and scales with the geometric mean δδν, where δν is the viscous length scale and δ is the pipe radius. Comparisons with the experimental data from the Princeton Superpipe and the Hi-Reff Facility at the National Metrology Institute of Japan show excellent agreement for a large range of Reynolds numbers. This work, along with the recent empirical evidence, suggests a possible change in the mechanism of turbulent momentum transfer for pipe flows in extreme Reynolds numbers.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0020665</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6094-7613</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1070-6631
ispartof Physics of fluids (1994), 2020-09, Vol.32 (9)
issn 1070-6631
1089-7666
language eng
recordid cdi_crossref_primary_10_1063_5_0020665
source AIP Journals Complete; Alma/SFX Local Collection
subjects Computational fluid dynamics
Extreme values
Fluid dynamics
Fluid flow
Friction factor
Incompressible flow
Momentum transfer
Newtonian fluids
Phenomenology
Physics
Pipe flow
Power law
Reynolds number
title New power-law scaling for friction factor of extreme Reynolds number pipe flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T12%3A21%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20power-law%20scaling%20for%20friction%20factor%20of%20extreme%20Reynolds%20number%20pipe%20flows&rft.jtitle=Physics%20of%20fluids%20(1994)&rft.au=Anbarlooei,%20H.%20R.&rft.date=2020-09-01&rft.volume=32&rft.issue=9&rft.issn=1070-6631&rft.eissn=1089-7666&rft.coden=PHFLE6&rft_id=info:doi/10.1063/5.0020665&rft_dat=%3Cproquest_cross%3E2444999692%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2444999692&rft_id=info:pmid/&rfr_iscdi=true